LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
LangChain
  • Universal
  • Hub
  • Node
  • Load
  • Serializable
  • Encoder Backed
  • File System
  • In Memory
LangChain Core
  • Agents
  • Caches
  • Base
  • Dispatch
  • Web
  • Manager
  • Promises
  • Chat History
  • Context
  • Base
  • Langsmith
  • Documents
  • Embeddings
  • Errors
  • Example Selectors
  • Indexing
  • Base
  • Chat Models
  • Llms
  • Profile
  • Load
  • Serializable
  • Memory
  • Messages
  • Tool
  • Output Parsers
  • Openai Functions
  • Openai Tools
  • Outputs
  • Prompt Values
  • Prompts
  • Retrievers
  • Document Compressors
  • Runnables
  • Graph
  • Singletons
  • Stores
  • Structured Query
  • Tools
  • Base
  • Console
  • Log Stream
  • Run Collector
  • Tracer Langchain
  • Stream
  • Async Caller
  • Chunk Array
  • Context
  • Env
  • Event Source Parse
  • Format
  • Function Calling
  • Hash
  • Json Patch
  • Json Schema
  • Math
  • Ssrf
  • Stream
  • Testing
  • Tiktoken
  • Types
  • Vectorstores
Text Splitters
MCP Adapters
⌘I

LangChain Assistant

Ask a question to get started

Enter to send•Shift+Enter new line

Menu

LangChain
UniversalHubNodeLoadSerializableEncoder BackedFile SystemIn Memory
LangChain Core
AgentsCachesBaseDispatchWebManagerPromisesChat HistoryContextBaseLangsmithDocumentsEmbeddingsErrorsExample SelectorsIndexingBaseChat ModelsLlmsProfileLoadSerializableMemoryMessagesToolOutput ParsersOpenai FunctionsOpenai ToolsOutputsPrompt ValuesPromptsRetrieversDocument CompressorsRunnablesGraphSingletonsStoresStructured QueryToolsBaseConsoleLog StreamRun CollectorTracer LangchainStreamAsync CallerChunk ArrayContextEnvEvent Source ParseFormatFunction CallingHashJson PatchJson SchemaMathSsrfStreamTestingTiktokenTypesVectorstores
Text Splitters
MCP Adapters
Language
Theme
JavaScript@langchain/textsplitters

@langchain/textsplitters

Description

🦜✂️ @langchain/textsplitters

This package contains various implementations of LangChain.js text splitters, most commonly used as part of retrieval-augmented generation (RAG) pipelines.

Installation

npm install @langchain/textsplitters @langchain/core

Development

To develop the @langchain/textsplitters package, you'll need to follow these instructions:

Install dependencies

pnpm install

Build the package

pnpm build

Or from the repo root:

pnpm build --filter @langchain/textsplitters

Run tests

Test files should live within a tests/ file in the src/ folder. Unit tests should end in .test.ts and integration tests should end in .int.test.ts:

$ pnpm test
$ pnpm test:int

Lint & Format

Run the linter & formatter to ensure your code is up to standard:

pnpm lint && pnpm format

Adding new entrypoints

If you add a new file to be exported, either import & re-export from src/index.ts, or add it to the exports field in the package.json file and run pnpm build to generate the new entrypoint.

Classes

Class

CharacterTextSplitter

Class

LatexTextSplitter

Class

MarkdownTextSplitter

Class

RecursiveCharacterTextSplitter

Class

TextSplitter

Class

TokenTextSplitter

Implementation of splitter which looks at tokens.

Interfaces

Interface

CharacterTextSplitterParams

Interface

RecursiveCharacterTextSplitterParams

Interface

TextSplitterParams

Interface

TokenTextSplitterParams

Types

Type

LatexTextSplitterParams

Type

MarkdownTextSplitterParams

Type

SupportedTextSplitterLanguage

Type

TextSplitterChunkHeaderOptions