LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
LangChain
  • Universal
  • Hub
  • Node
  • Load
  • Serializable
  • Encoder Backed
  • File System
  • In Memory
LangChain Core
  • Agents
  • Caches
  • Base
  • Dispatch
  • Web
  • Manager
  • Promises
  • Chat History
  • Context
  • Base
  • Langsmith
  • Documents
  • Embeddings
  • Errors
  • Example Selectors
  • Indexing
  • Base
  • Chat Models
  • Llms
  • Profile
  • Load
  • Serializable
  • Memory
  • Messages
  • Tool
  • Output Parsers
  • Openai Functions
  • Openai Tools
  • Outputs
  • Prompt Values
  • Prompts
  • Retrievers
  • Document Compressors
  • Runnables
  • Graph
  • Singletons
  • Stores
  • Structured Query
  • Tools
  • Base
  • Console
  • Log Stream
  • Run Collector
  • Tracer Langchain
  • Stream
  • Async Caller
  • Chunk Array
  • Context
  • Env
  • Event Source Parse
  • Format
  • Function Calling
  • Hash
  • Json Patch
  • Json Schema
  • Math
  • Ssrf
  • Stream
  • Testing
  • Tiktoken
  • Types
  • Vectorstores
Text Splitters
MCP Adapters
⌘I

LangChain Assistant

Ask a question to get started

Enter to send•Shift+Enter new line

Menu

LangChain
UniversalHubNodeLoadSerializableEncoder BackedFile SystemIn Memory
LangChain Core
AgentsCachesBaseDispatchWebManagerPromisesChat HistoryContextBaseLangsmithDocumentsEmbeddingsErrorsExample SelectorsIndexingBaseChat ModelsLlmsProfileLoadSerializableMemoryMessagesToolOutput ParsersOpenai FunctionsOpenai ToolsOutputsPrompt ValuesPromptsRetrieversDocument CompressorsRunnablesGraphSingletonsStoresStructured QueryToolsBaseConsoleLog StreamRun CollectorTracer LangchainStreamAsync CallerChunk ArrayContextEnvEvent Source ParseFormatFunction CallingHashJson PatchJson SchemaMathSsrfStreamTestingTiktokenTypesVectorstores
Text Splitters
MCP Adapters
Language
Theme
JavaScript@langchain/textsplittersTextSplitter
Class●Since v1.0

TextSplitter

Copy
class TextSplitter

Bases

BaseDocumentTransformer

Constructors

Properties

Methods

Inherited fromBaseDocumentTransformer(langchain_core)

Methods

Mtransform_documentsMatransform_documents
View source on GitHub
constructor
constructor→ TextSplitter
property
chunkOverlap: number
property
chunkSize: number
property
keepSeparator: boolean
property
lc_kwargs: SerializedFields
property
lc_namespace: string[]
property
lc_runnable: boolean
property
lc_serializable: boolean
property
lengthFunction: (text: string) => number | (text: string) => Promise<number>
property
name: string
property
lc_aliases: __type | undefined
property
lc_attributes: SerializedFields | undefined
property
lc_id: string[]
property
lc_secrets: __type | undefined
property
lc_serializable_keys: string[] | undefined
method
_batchWithConfig→ Promise<DocumentInterface<Record<string, any>>[] | Error[]>
method
_callWithConfig→ Promise<DocumentInterface<Record<string, any>>[]>
method
_getOptionsList→ Partial<O>[]
method
_separateRunnableConfigFromCallOptions→ [RunnableConfig<Record<string, any>>, Omit<Partial<RunnableConfig<Record<string, any>>>, keyof RunnableConfig<Record<string, any>>>]
method
_streamIterator→ AsyncGenerator<DocumentInterface<Record<string, any>>[]>
method
_streamLog→ AsyncGenerator<RunLogPatch>
method
_transformStreamWithConfig→ AsyncGenerator<O>
method
assign→ Runnable
method
asTool→ RunnableToolLike<InteropZodType<T | ToolCall<string, Record<string, any>>>, DocumentInterface<Record<string, any>>[]>
method
batch→ Promise<DocumentInterface<Record<string, any>>[][]>
method
createDocuments→ Promise<Document<Record<string, any>>[]>
method
getGraph→ Graph
method
getName→ string
method
invoke→ Promise<DocumentInterface<Record<string, any>>[]>
method
mergeSplits→ Promise<string[]>
method
pick→ Runnable
method
pipe→ Runnable<DocumentInterface<Record<string, any>>[], Exclude<NewRunOutput, Error>>
method
splitDocuments→ Promise<Document<Record<string, any>>[]>
method
splitOnSeparator→ string[]
method
splitText→ Promise<string[]>
method
stream→ Promise<IterableReadableStream<DocumentInterface<Record<string, any>>[]>>
method
streamEvents→ IterableReadableStream<StreamEvent>
method
streamLog→ AsyncGenerator<RunLogPatch>
method
toJSON→ Serialized
method
toJSONNotImplemented→ SerializedNotImplemented
method
transform→ AsyncGenerator<DocumentInterface<Record<string, any>>[]>
method
transformDocuments→ Promise<Document<Record<string, any>>[]>
method
withConfig→ Runnable<DocumentInterface<Record<string, any>>[], DocumentInterface<Record<string, any>>[], RunnableConfig<Record<string, any>>>
method
withFallbacks→ RunnableWithFallbacks<DocumentInterface<Record<string, any>>[], DocumentInterface<Record<string, any>>[]>
method
withListeners→ Runnable<DocumentInterface<Record<string, any>>[], DocumentInterface<Record<string, any>>[], RunnableConfig<Record<string, any>>>
method
withRetry→ RunnableRetry<DocumentInterface<Record<string, any>>[], DocumentInterface<Record<string, any>>[], RunnableConfig<Record<string, any>>>
method
isRunnable→ thing is Runnable<any, any, RunnableConfig<Record<string, any>>>
method
lc_name→ string

Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.

Default streaming implementation. Subclasses should override this method if they support streaming output.

Helper method to transform an Iterator of Input values into an Iterator of Output values, with callbacks. Use this to implement stream() or transform() in Runnable subclasses.

Assigns new fields to the dict output of this runnable. Returns a new runnable.

Convert a runnable to a tool. Return a new instance of RunnableToolLike which contains the runnable, name, description and schema.

Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

Method to invoke the document transformation. This method calls the transformDocuments method with the provided input.

Pick keys from the dict output of this runnable. Returns a new runnable.

Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.

Stream output in chunks.

Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

Transform a list of documents.

Bind config to a Runnable, returning a new Runnable.

Create a new runnable from the current one that will try invoking other passed fallback runnables if the initial invocation fails.

Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.

Add retry logic to an existing runnable.

The name of the serializable. Override to provide an alias or to preserve the serialized module name in minified environments.

Implemented as a static method to support loading logic.

Generate a stream of events emitted by the internal steps of the runnable.

Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

A StreamEvent is a dictionary with the following schema:

  • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
  • name: string - The name of the runnable that generated the event.
  • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
  • tags: string[] - The tags of the runnable that generated the event.
  • metadata: Record<string, any> - The metadata of the runnable that generated the event.
  • data: Record<string, any>

Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

ATTENTION This reference table is for the V2 version of the schema.

+----------------------+-----------------------------+------------------------------------------+
| event                | input                       | output/chunk                             |
+======================+=============================+==========================================+
| on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
+----------------------+-----------------------------+------------------------------------------+
| on_chat_model_stream |                             | AIMessageChunk("hello")                  |
+----------------------+-----------------------------+------------------------------------------+
| on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_start         | {'input': 'hello'}          |                                          |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_stream        |                             | 'Hello'                                  |
+----------------------+-----------------------------+------------------------------------------+
| on_llm_end           | 'Hello human!'              |                                          |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_start       |                             |                                          |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_stream      |                             | "hello world!"                           |
+----------------------+-----------------------------+------------------------------------------+
| on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
+----------------------+-----------------------------+------------------------------------------+
| on_tool_start        | {"x": 1, "y": "2"}          |                                          |
+----------------------+-----------------------------+------------------------------------------+
| on_tool_end          |                             | {"x": 1, "y": "2"}                       |
+----------------------+-----------------------------+------------------------------------------+
| on_retriever_start   | {"query": "hello"}          |                                          |
+----------------------+-----------------------------+------------------------------------------+
| on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
+----------------------+-----------------------------+------------------------------------------+
| on_prompt_start      | {"question": "hello"}       |                                          |
+----------------------+-----------------------------+------------------------------------------+
| on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
+----------------------+-----------------------------+------------------------------------------+

The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

In addition to the standard events above, users can also dispatch custom events.

Custom events will be only be surfaced with in the v2 version of the API!

A custom event has following format:

+-----------+------+------------------------------------------------------------+
| Attribute | Type | Description                                                |
+===========+======+============================================================+
| name      | str  | A user defined name for the event.                         |
+-----------+------+------------------------------------------------------------+
| data      | Any  | The data associated with the event. This can be anything.  |
+-----------+------+------------------------------------------------------------+

Here's an example:

import { RunnableLambda } from "@langchain/core/runnables";
import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
// Use this import for web environments that don't support "async_hooks"
// and manually pass config to child runs.
// import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

const slowThing = RunnableLambda.from(async (someInput: string) => {
  // Placeholder for some slow operation
  await new Promise((resolve) => setTimeout(resolve, 100));
  await dispatchCustomEvent("progress_event", {
   message: "Finished step 1 of 2",
 });
 await new Promise((resolve) => setTimeout(resolve, 100));
 return "Done";
});

const eventStream = await slowThing.streamEvents("hello world", {
  version: "v2",
});

for await (const event of eventStream) {
 if (event.event === "on_custom_event") {
   console.log(event);
 }
}