VespaStore(
self,
app: Any,
embedding_function: Optional[Embeddings] = None,
Vespa vector store.
To use, you should have the python client library pyvespa installed.
Example:
.. code-block:: python
from langchain_community.vectorstores import VespaStore from langchain_community.embeddings.openai import OpenAIEmbeddings from vespa.application import Vespa
vespa_app = Vespa(url="...", port=..., application_package=...)
vespa_config = dict( page_content_field="text", embedding_field="embedding", input_field="query_embedding", metadata_fields=["date", "rating", "author"] )
embedding_function = OpenAIEmbeddings() vectorstore = VespaStore(vespa_app, embedding_function, **vespa_config)