LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-corevectorstoresbaseVectorStorefrom_documents
    Method●Since v0.2

    from_documents

    Return VectorStore initialized from documents and embeddings.

    Copy
    from_documents(
      cls,
      documents: list[Document],
      embedding: Embeddings,
      **kwargs: Any = {}
    ) -> Self

    Parameters

    NameTypeDescription
    documents*list[Document]

    List of Document objects to add to the VectorStore.

    embedding*Embeddings

    Embedding function to use.

    **kwargsAny
    Default:{}

    Additional keyword arguments.

    View source on GitHub