SupabaseVectorStore(
self,
Supabase Postgres vector store.
It assumes you have the pgvector
extension installed and a match_documents (or similar) function. For more details:
https://integrations.langchain.com/vectorstores?integration_name=SupabaseVectorStore
You can implement your own match_documents function in order to limit the search
space to a subset of documents based on your own authorization or business logic.
Note that the Supabase Python client does not yet support async operations.
If you'd like to use max_marginal_relevance_search, please review the instructions
below on modifying the match_documents function to return matched embeddings.
Examples:
.. code-block:: python
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_core.documents import Document
from langchain_community.vectorstores import SupabaseVectorStore
from supabase.client import create_client
docs = [
Document(page_content="foo", metadata={"id": 1}),
]
embeddings = OpenAIEmbeddings()
supabase_client = create_client("my_supabase_url", "my_supabase_key")
vector_store = SupabaseVectorStore.from_documents(
docs,
embeddings,
client=supabase_client,
table_name="documents",
query_name="match_documents",
chunk_size=500,
)
To load from an existing table:
.. code-block:: python
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from supabase.client import create_client
embeddings = OpenAIEmbeddings()
supabase_client = create_client("my_supabase_url", "my_supabase_key")
vector_store = SupabaseVectorStore(
client=supabase_client,
embedding=embeddings,
table_name="documents",
query_name="match_documents",
)
Return VectorStore initialized from texts and embeddings.
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
Delete by vector IDs.