LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicevaluationcriteriaeval_chainCriteriaEvalChainfrom_llm
    Method●Since v1.0

    from_llm

    Create a CriteriaEvalChain instance from an llm and criteria.

    Parameters

    llm : BaseLanguageModel The language model to use for evaluation. criteria : CRITERIA_TYPE - default=None for "helpfulness" The criteria to evaluate the runs against. It can be: - a mapping of a criterion name to its description - a single criterion name present in one of the default criteria - a single ConstitutionalPrinciple instance prompt : Optional[BasePromptTemplate], default=None The prompt template to use for generating prompts. If not provided, a default prompt template will be used. **kwargs : Any Additional keyword arguments to pass to the LLMChain constructor.

    Returns:

    CriteriaEvalChain An instance of the CriteriaEvalChain class.

    Examples:

    from langchain_openai import OpenAI from langchain_classic.evaluation.criteria import LabeledCriteriaEvalChain model = OpenAI() criteria = { "hallucination": ( "Does this submission contain information" " not present in the input or reference?" ), } chain = LabeledCriteriaEvalChain.from_llm( llm=model, criteria=criteria, )

    Copy
    from_llm(
      cls,
      llm: BaseLanguageModel,
      criteria: CRITERIA_TYPE | None = None,
      *,
      prompt: BasePromptTemplate | None = None,
      **kwargs: Any = {}
    ) -> CriteriaEvalChain
    View source on GitHub