Class for a constitutional principle.
A base class for evaluators that use an LLM.
String evaluator interface.
Grade, tag, or otherwise evaluate predictions relative to their inputs and/or reference labels.
A Criteria to evaluate.
A parser for the output of the CriteriaEvalChain.
LLM Chain for evaluating runs against criteria.
llm : BaseLanguageModel
The language model to use for evaluation.
criteria : Union[Mapping[str, str]]
The criteria or rubric to evaluate the runs against. It can be a mapping of
criterion name to its description, or a single criterion name.
prompt : Optional[BasePromptTemplate], default=None
The prompt template to use for generating prompts. If not provided, a
default prompt template will be used based on the value of
requires_reference.
requires_reference : bool, default=False
Whether the evaluation requires a reference text. If True, the
PROMPT_WITH_REFERENCES template will be used, which includes the
reference labels in the prompt. Otherwise, the PROMPT template will be
used, which is a reference-free prompt.
**kwargs : Any
Additional keyword arguments to pass to the LLMChain constructor.
CriteriaEvalChain
An instance of the CriteriaEvalChain class.
from langchain_anthropic import ChatAnthropic from langchain_classic.evaluation.criteria import CriteriaEvalChain model = ChatAnthropic(temperature=0) criteria = {"my-custom-criterion": "Is the submission the most amazing ever?"} evaluator = CriteriaEvalChain.from_llm(llm=model, criteria=criteria) evaluator.evaluate_strings( ... prediction="Imagine an ice cream flavor for the color aquamarine", ... input="Tell me an idea", ... ) { 'reasoning': 'Here is my step-by-step reasoning for the given criteria:\n\nThe criterion is: "Is the submission the most amazing ever?" This is a subjective criterion and open to interpretation. The submission suggests an aquamarine-colored ice cream flavor which is creative but may or may not be considered the most amazing idea ever conceived. There are many possible amazing ideas and this one ice cream flavor suggestion may or may not rise to that level for every person. \n\nN', 'value': 'N', 'score': 0, }
from langchain_openai import ChatOpenAI from langchain_classic.evaluation.criteria import LabeledCriteriaEvalChain model = ChatOpenAI(model="gpt-4", temperature=0) criteria = "correctness" evaluator = LabeledCriteriaEvalChain.from_llm( ... llm=model, ... criteria=criteria, ... ) evaluator.evaluate_strings( ... prediction="The answer is 4", ... input="How many apples are there?", ... reference="There are 3 apples", ... ) { 'score': 0, 'reasoning': 'The criterion for this task is the correctness of the submission. The submission states that there are 4 apples, but the reference indicates that there are actually 3 apples. Therefore, the submission is not correct, accurate, or factual according to the given criterion.\n\nN', 'value': 'N', }
Criteria evaluation chain that requires references.
Chain to run queries against LLMs.
This class is deprecated. See below for an example implementation using LangChain runnables:
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template)
model = OpenAI()
chain = prompt | model | StrOutputParser()
chain.invoke("your adjective here")