LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
LangChain
  • Universal
  • Hub
  • Node
  • Load
  • Serializable
  • Encoder Backed
  • File System
  • In Memory
LangChain Core
  • Agents
  • Caches
  • Base
  • Dispatch
  • Web
  • Manager
  • Promises
  • Chat History
  • Context
  • Base
  • Langsmith
  • Documents
  • Embeddings
  • Errors
  • Example Selectors
  • Indexing
  • Base
  • Chat Models
  • Llms
  • Profile
  • Load
  • Serializable
  • Memory
  • Messages
  • Tool
  • Output Parsers
  • Openai Functions
  • Openai Tools
  • Outputs
  • Prompt Values
  • Prompts
  • Retrievers
  • Document Compressors
  • Runnables
  • Graph
  • Singletons
  • Stores
  • Structured Query
  • Tools
  • Base
  • Console
  • Log Stream
  • Run Collector
  • Tracer Langchain
  • Stream
  • Async Caller
  • Chunk Array
  • Context
  • Env
  • Event Source Parse
  • Format
  • Function Calling
  • Hash
  • Json Patch
  • Json Schema
  • Math
  • Ssrf
  • Stream
  • Testing
  • Tiktoken
  • Types
  • Vectorstores
Text Splitters
MCP Adapters
⌘I

LangChain Assistant

Ask a question to get started

Enter to send•Shift+Enter new line

Menu

LangChain
UniversalHubNodeLoadSerializableEncoder BackedFile SystemIn Memory
LangChain Core
AgentsCachesBaseDispatchWebManagerPromisesChat HistoryContextBaseLangsmithDocumentsEmbeddingsErrorsExample SelectorsIndexingBaseChat ModelsLlmsProfileLoadSerializableMemoryMessagesToolOutput ParsersOpenai FunctionsOpenai ToolsOutputsPrompt ValuesPromptsRetrieversDocument CompressorsRunnablesGraphSingletonsStoresStructured QueryToolsBaseConsoleLog StreamRun CollectorTracer LangchainStreamAsync CallerChunk ArrayContextEnvEvent Source ParseFormatFunction CallingHashJson PatchJson SchemaMathSsrfStreamTestingTiktokenTypesVectorstores
Text Splitters
MCP Adapters
Language
Theme
JavaScript@langchain/textsplittersLatexTextSplitter_transformStreamWithConfig
Methodā—Since v1.0

_transformStreamWithConfig

Copy
_transformStreamWithConfig<
  I extends DocumentInterface<Record<string, any>>[],
  O extends DocumentInterface
View source on GitHub
<
Record
<
string
,
any
>
>
[
]
>
(
inputGenerator
:
AsyncGenerator
<
I
>
,
transformer
:
(
generator
:
AsyncGenerator
<
I
>
,
runManager
:
CallbackManagerForChainRun
,
options
:
Partial
<
RunnableConfig
<
Record
<
string
,
any
>
>
>
)
=
>
AsyncGenerator
<
O
>
,
options
:
Partial
<
RunnableConfig
<
Record
<
string
,
any
>
>
>
__type
)
:
AsyncGenerator
<
O
>

Parameters

NameTypeDescription
inputGenerator*AsyncGenerator<I>
transformer*(generator: AsyncGenerator<I>, runManager?: CallbackManagerForChainRun, options?: Partial<RunnableConfig<Record<string, any>>>) => AsyncGenerator<O>
optionsPartial<RunnableConfig<Record<string, any>>> & __type

Helper method to transform an Iterator of Input values into an Iterator of Output values, with callbacks. Use this to implement stream() or transform() in Runnable subclasses.