LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
LangGraph
  • Web
  • Channels
  • Pregel
  • Prebuilt
  • Remote
LangGraph SDK
  • Client
  • Auth
  • React
  • Logging
  • React Ui
  • Server
LangGraph Checkpoint
LangGraph Checkpoint MongoDB
LangGraph Checkpoint Postgres
  • Store
LangGraph Checkpoint Redis
  • Shallow
  • Store
LangGraph Checkpoint SQLite
LangGraph Checkpoint Validation
  • Cli
LangGraph API
LangGraph CLI
LangGraph CUA
  • Utils
LangGraph Supervisor
LangGraph Swarm
⌘I

LangChain Assistant

Ask a question to get started

Enter to send•Shift+Enter new line

Menu

LangGraph
WebChannelsPregelPrebuiltRemote
LangGraph SDK
ClientAuthReactLoggingReact UiServer
LangGraph Checkpoint
LangGraph Checkpoint MongoDB
LangGraph Checkpoint Postgres
Store
LangGraph Checkpoint Redis
ShallowStore
LangGraph Checkpoint SQLite
LangGraph Checkpoint Validation
Cli
LangGraph API
LangGraph CLI
LangGraph CUA
Utils
LangGraph Supervisor
LangGraph Swarm
Language
Theme
JavaScript@langchain/langgraph-checkpointIndexConfig
Interfaceā—Since v0.0

IndexConfig

Configuration for indexing documents for semantic search in the store.

This configures how documents are embedded and indexed for vector similarity search.

Copy
interface IndexConfig

Properties

View source on GitHub
property
dims: number
property
embeddings: Embeddings
property
fields: string[]

Number of dimensions in the embedding vectors.

Common embedding model dimensions:

  • OpenAI text-embedding-3-large: 256, 1024, or 3072
  • OpenAI text-embedding-3-small: 512 or 1536
  • OpenAI text-embedding-ada-002: 1536
  • Cohere embed-english-v3.0: 1024
  • Cohere embed-english-light-v3.0: 384
  • Cohere embed-multilingual-v3.0: 1024
  • Cohere embed-multilingual-light-v3.0: 384

The embeddings model to use for generating vectors. This should be a LangChain Embeddings implementation.

Fields to extract text from for embedding generation.

Path syntax supports:

  • Simple field access: "field"
  • Nested fields: "metadata.title"
  • Array indexing:
    • All elements: "chapters[*].content"
    • Specific index: "authors[0].name"
    • Last element: "array[-1]"