LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
LangChain
  • Universal
  • Hub
  • Node
  • Load
  • Serializable
  • Encoder Backed
  • File System
  • In Memory
LangChain Core
  • Agents
  • Caches
  • Base
  • Dispatch
  • Web
  • Manager
  • Promises
  • Chat History
  • Context
  • Base
  • Langsmith
  • Documents
  • Embeddings
  • Errors
  • Example Selectors
  • Indexing
  • Base
  • Chat Models
  • Llms
  • Profile
  • Load
  • Serializable
  • Memory
  • Messages
  • Tool
  • Output Parsers
  • Openai Functions
  • Openai Tools
  • Outputs
  • Prompt Values
  • Prompts
  • Retrievers
  • Document Compressors
  • Runnables
  • Graph
  • Singletons
  • Stores
  • Structured Query
  • Tools
  • Base
  • Console
  • Log Stream
  • Run Collector
  • Tracer Langchain
  • Stream
  • Async Caller
  • Chunk Array
  • Context
  • Env
  • Event Source Parse
  • Format
  • Function Calling
  • Hash
  • Json Patch
  • Json Schema
  • Math
  • Ssrf
  • Stream
  • Testing
  • Tiktoken
  • Types
  • Vectorstores
Text Splitters
MCP Adapters
⌘I

LangChain Assistant

Ask a question to get started

Enter to send•Shift+Enter new line

Menu

LangChain
UniversalHubNodeLoadSerializableEncoder BackedFile SystemIn Memory
LangChain Core
AgentsCachesBaseDispatchWebManagerPromisesChat HistoryContextBaseLangsmithDocumentsEmbeddingsErrorsExample SelectorsIndexingBaseChat ModelsLlmsProfileLoadSerializableMemoryMessagesToolOutput ParsersOpenai FunctionsOpenai ToolsOutputsPrompt ValuesPromptsRetrieversDocument CompressorsRunnablesGraphSingletonsStoresStructured QueryToolsBaseConsoleLog StreamRun CollectorTracer LangchainStreamAsync CallerChunk ArrayContextEnvEvent Source ParseFormatFunction CallingHashJson PatchJson SchemaMathSsrfStreamTestingTiktokenTypesVectorstores
Text Splitters
MCP Adapters
Language
Theme
JavaScript@langchain/coreutilstestingSyntheticEmbeddings
Class●Since v1.0

SyntheticEmbeddings

A class that provides synthetic embeddings by overriding the embedDocuments and embedQuery methods to generate embeddings based on the input documents. The embeddings are generated by converting each document into chunks, calculating a numerical value for each chunk, and returning an array of these values as the embedding.

Copy
class SyntheticEmbeddings

Bases

Embeddings

Constructors

constructor
constructor

Properties

property
caller: AsyncCaller

The async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.

property
vectorSize: number

Methods

method
embedDocuments→ Promise<TOutput[]>

An abstract method that takes an array of documents as input and returns a promise that resolves to an array of vectors for each document.

method
embedQuery→ Promise<TOutput>

An abstract method that takes a single document as input and returns a promise that resolves to a vector for the query document.

Inherited fromEmbeddings

Properties

Pcaller: AsyncCaller
—

The async caller should be used by subclasses to make any async calls,

Methods

MembedDocuments→ Promise<TOutput[]>
—

An abstract method that takes an array of documents as input and

MembedQuery→ Promise<TOutput>
—

An abstract method that takes a single document as input and returns a

View source on GitHub