MongoDBAtlasParentDocumentRetriever#
- class langchain_mongodb.retrievers.parent_document.MongoDBAtlasParentDocumentRetriever[source]#
Bases:
ParentDocumentRetrieverMongoDB Atlasβs ParentDocumentRetriever
βParent Document Retrievalβ is a common approach to enhance the performance of retrieval methods in RAG by providing the LLM with a broader context to consider. In essence, we divide the original documents into relatively small chunks, embed each one, and store them in a vector database. Using such small chunks (a sentence or a couple of sentences) helps the embedding models to better reflect their meaning.
In this implementation, we can store both parent and child documents in a single collection while only having to compute and index embedding vectors for the chunks!
This is achieved by backing both the vectorstore,
MongoDBAtlasVectorSearchand the docstoreMongoDBDocStoreby the same MongoDB Collection.- For more details, see superclasses
ParentDocumentRetrieverandMultiVectorRetriever.
Examples
>>> from langchain_mongodb.retrievers.parent_document import ( >>> ParentDocumentRetriever >>> ) >>> from langchain_text_splitters import RecursiveCharacterTextSplitter >>> from langchain_openai import OpenAIEmbeddings >>> >>> retriever = ParentDocumentRetriever.from_connection_string( >>> "mongodb+srv://<user>:<clustername>.mongodb.net", >>> OpenAIEmbeddings(model="text-embedding-3-large"), >>> RecursiveCharacterTextSplitter(chunk_size=400), >>> "example_database" >>> ) retriever.add_documents([Document(..., technical_report_pages) >>> resp = retriever.invoke("Langchain MongDB Partnership Ecosystem") >>> print(resp) [Document(...), ...]
Note
MongoDBAtlasParentDocumentRetriever implements the standard
Runnable Interface. πThe
Runnable Interfacehas additional methods that are available on runnables, such aswith_config,with_types,with_retry,assign,bind,get_graph, and more.- param byte_store: ByteStore | None = None#
The lower-level backing storage layer for the parent documents
- param child_metadata_fields: Sequence[str] | None = None#
Metadata fields to leave in child documents. If None, leave all parent document metadata.
- param child_splitter: TextSplitter [Required]#
The text splitter to use to create child documents.
- param docstore: MongoDBDocStore [Required]#
Provides an API around the Collection to add the parent documents
- param id_key: str = 'doc_id'#
Key stored in metadata pointing to parent document
- param metadata: dict[str, Any] | None = None#
Optional metadata associated with the retriever. Defaults to None. This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case.
- param parent_splitter: TextSplitter | None = None#
The text splitter to use to create parent documents. If none, then the parent documents will be the raw documents passed in.
- param search_kwargs: dict [Optional]#
Keyword arguments to pass to the search function.
- param search_type: SearchType = SearchType.similarity#
Type of search to perform (similarity / mmr)
- param tags: list[str] | None = None#
Optional list of tags associated with the retriever. Defaults to None. These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case.
- param vectorstore: MongoDBAtlasVectorSearch [Required]#
Vectorstore API to add, embed, and search through child documents
- classmethod from_connection_string(
- connection_string: str,
- embedding_model: Embeddings,
- child_splitter: TextSplitter,
- database_name: str,
- collection_name: str = 'document_with_chunks',
- id_key: str = 'doc_id',
- **kwargs: Any,
Construct Retriever using one Collection for VectorStore and one for DocStore
See parent classes
ParentDocumentRetrieverandMultiVectorRetrieverfor further details.- Parameters:
connection_string (str) β A valid MongoDB Atlas connection URI.
embedding_model (Embeddings) β The text embedding model to use for the vector store.
child_splitter (TextSplitter) β Splits documents into chunks. If parent_splitter is given, the documents will have already been split.
database_name (str) β Name of database to connect to. Created if it does not exist.
collection_name (str) β Name of collection to use. It includes parent documents, sub-documents and their embeddings.
id_key (str) β Key used to identify parent documents.
**kwargs (Any) β Additional keyword arguments. See parent classes for more.
- Return type:
Returns: A new MongoDBAtlasParentDocumentRetriever
- async aadd_documents(
- documents: list[Document],
- ids: list[str] | None = None,
- add_to_docstore: bool = True,
- **kwargs: Any,
Adds documents to the docstore and vectorstores.
- Parameters:
documents (list[Document]) β List of documents to add
ids (list[str] | None) β Optional list of ids for documents. If provided should be the same length as the list of documents. Can be provided if parent documents are already in the document store and you donβt want to re-add to the docstore. If not provided, random UUIDs will be used as ids.
add_to_docstore (bool) β Boolean of whether to add documents to docstore. This can be false if and only if ids are provided. You may want to set this to False if the documents are already in the docstore and you donβt want to re-add them.
**kwargs (Any) β additional keyword arguments passed to the vectorstore.
- Return type:
None
- async abatch(
- inputs: list[Input],
- config: RunnableConfig | list[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Default implementation runs
ainvokein parallel usingasyncio.gather.The default implementation of
batchworks well for IO bound runnables.Subclasses should override this method if they can batch more efficiently; e.g., if the underlying
Runnableuses an API which supports a batch mode.- Parameters:
inputs (list[Input]) β A list of inputs to the
Runnable.config (RunnableConfig | list[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
**kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Returns:
A list of outputs from the
Runnable.- Return type:
list[Output]
- async abatch_as_completed(
- inputs: Sequence[Input],
- config: RunnableConfig | Sequence[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Run
ainvokein parallel on a list of inputs.Yields results as they complete.
- Parameters:
inputs (Sequence[Input]) β A list of inputs to the
Runnable.config (RunnableConfig | Sequence[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Yields:
A tuple of the index of the input and the output from the
Runnable.- Return type:
AsyncIterator[tuple[int, Output | Exception]]
- add_documents(
- documents: list[Document],
- ids: list[str] | None = None,
- add_to_docstore: bool = True,
- **kwargs: Any,
Adds documents to the docstore and vectorstores.
- Parameters:
documents (list[Document]) β List of documents to add
ids (list[str] | None) β Optional list of ids for documents. If provided should be the same length as the list of documents. Can be provided if parent documents are already in the document store and you donβt want to re-add to the docstore. If not provided, random UUIDs will be used as ids.
add_to_docstore (bool) β Boolean of whether to add documents to docstore. This can be false if and only if ids are provided. You may want to set this to False if the documents are already in the docstore and you donβt want to re-add them.
**kwargs (Any) β additional keyword arguments passed to the vectorstore.
- Return type:
None
- async aget_relevant_documents(
- query: str,
- *,
- callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None,
- tags: list[str] | None = None,
- metadata: dict[str, Any] | None = None,
- run_name: str | None = None,
- **kwargs: Any,
Deprecated since version 0.1.46: Use
ainvoke()instead. It will not be removed until langchain-core==1.0.Asynchronously get documents relevant to a query.
Users should favor using .ainvoke or .abatch rather than aget_relevant_documents directly.
- Parameters:
query (str) β string to find relevant documents for.
callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) β Callback manager or list of callbacks.
tags (list[str] | None) β Optional list of tags associated with the retriever. These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.
metadata (dict[str, Any] | None) β Optional metadata associated with the retriever. This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.
run_name (str | None) β Optional name for the run. Defaults to None.
kwargs (Any) β Additional arguments to pass to the retriever.
- Returns:
List of relevant documents.
- Return type:
list[Document]
- async ainvoke(
- input: str,
- config: RunnableConfig | None = None,
- **kwargs: Any,
Asynchronously invoke the retriever to get relevant documents.
Main entry point for asynchronous retriever invocations.
- Parameters:
input (str) β The query string.
config (RunnableConfig | None) β Configuration for the retriever. Defaults to None.
kwargs (Any) β Additional arguments to pass to the retriever.
- Returns:
List of relevant documents.
- Return type:
list[Document]
Examples:
await retriever.ainvoke("query")
- async astream(
- input: Input,
- config: RunnableConfig | None = None,
- **kwargs: Any | None,
Default implementation of
astream, which callsainvoke.Subclasses should override this method if they support streaming output.
- Parameters:
input (Input) β The input to the
Runnable.config (RunnableConfig | None) β The config to use for the
Runnable. Defaults to None.kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Yields:
The output of the
Runnable.- Return type:
AsyncIterator[Output]
- async astream_events(
- input: Any,
- config: RunnableConfig | None = None,
- *,
- version: Literal['v1', 'v2'] = 'v2',
- include_names: Sequence[str] | None = None,
- include_types: Sequence[str] | None = None,
- include_tags: Sequence[str] | None = None,
- exclude_names: Sequence[str] | None = None,
- exclude_types: Sequence[str] | None = None,
- exclude_tags: Sequence[str] | None = None,
- **kwargs: Any,
Generate a stream of events.
Use to create an iterator over
StreamEventsthat provide real-time information about the progress of theRunnable, includingStreamEventsfrom intermediate results.A
StreamEventis a dictionary with the following schema:event: str - Event names are of the format:on_[runnable_type]_(start|stream|end).name: str - The name of theRunnablethat generated the event.run_id: str - randomly generated ID associated with the given execution of theRunnablethat emitted the event. A childRunnablethat gets invoked as part of the execution of a parentRunnableis assigned its own unique ID.parent_ids: list[str] - The IDs of the parent runnables that generated the event. The rootRunnablewill have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags: Optional[list[str]] - The tags of theRunnablethat generated the event.metadata: Optional[dict[str, Any]] - The metadata of theRunnablethat generated the event.data: dict[str, Any]
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
event
name
chunk
input
output
on_chat_model_start[model name]
{"messages": [[SystemMessage, HumanMessage]]}on_chat_model_stream[model name]
AIMessageChunk(content="hello")on_chat_model_end[model name]
{"messages": [[SystemMessage, HumanMessage]]}AIMessageChunk(content="hello world")on_llm_start[model name]
{'input': 'hello'}on_llm_stream[model name]
``βHelloβ ``
on_llm_end[model name]
'Hello human!'on_chain_startformat_docs
on_chain_streamformat_docs
'hello world!, goodbye world!'on_chain_endformat_docs
[Document(...)]'hello world!, goodbye world!'on_tool_startsome_tool
{"x": 1, "y": "2"}on_tool_endsome_tool
{"x": 1, "y": "2"}on_retriever_start[retriever name]
{"query": "hello"}on_retriever_end[retriever name]
{"query": "hello"}[Document(...), ..]on_prompt_start[template_name]
{"question": "hello"}on_prompt_end[template_name]
{"question": "hello"}ChatPromptValue(messages: [SystemMessage, ...])In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute
Type
Description
name
str
A user defined name for the event.
data
Any
The data associated with the event. This can be anything, though we suggest making it JSON serializable.
Here are declarations associated with the standard events shown above:
format_docs:def format_docs(docs: list[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:template = ChatPromptTemplate.from_messages( [ ("system", "You are Cat Agent 007"), ("human", "{question}"), ] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters:
input (Any) β The input to the
Runnable.config (Optional[RunnableConfig]) β The config to use for the
Runnable.version (Literal['v1', 'v2']) β The version of the schema to use either
'v2'or'v1'. Users should use'v2'.'v1'is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in'v2'.include_names (Optional[Sequence[str]]) β Only include events from
Runnableswith matching names.include_types (Optional[Sequence[str]]) β Only include events from
Runnableswith matching types.include_tags (Optional[Sequence[str]]) β Only include events from
Runnableswith matching tags.exclude_names (Optional[Sequence[str]]) β Exclude events from
Runnableswith matching names.exclude_types (Optional[Sequence[str]]) β Exclude events from
Runnableswith matching types.exclude_tags (Optional[Sequence[str]]) β Exclude events from
Runnableswith matching tags.kwargs (Any) β Additional keyword arguments to pass to the
Runnable. These will be passed toastream_logas this implementation ofastream_eventsis built on top ofastream_log.
- Yields:
An async stream of
StreamEvents.- Raises:
NotImplementedError β If the version is not
'v1'or'v2'.- Return type:
AsyncIterator[StreamEvent]
- batch(
- inputs: list[Input],
- config: RunnableConfig | list[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying
Runnableuses an API which supports a batch mode.- Parameters:
inputs (list[Input]) β A list of inputs to the
Runnable.config (RunnableConfig | list[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
**kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Returns:
A list of outputs from the
Runnable.- Return type:
list[Output]
- batch_as_completed(
- inputs: Sequence[Input],
- config: RunnableConfig | Sequence[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Run
invokein parallel on a list of inputs.Yields results as they complete.
- Parameters:
inputs (Sequence[Input]) β A list of inputs to the
Runnable.config (RunnableConfig | Sequence[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
**kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Yields:
Tuples of the index of the input and the output from the
Runnable.- Return type:
Iterator[tuple[int, Output | Exception]]
- bind(
- **kwargs: Any,
Bind arguments to a
Runnable, returning a newRunnable.Useful when a
Runnablein a chain requires an argument that is not in the output of the previousRunnableor included in the user input.- Parameters:
kwargs (Any) β The arguments to bind to the
Runnable.- Returns:
A new
Runnablewith the arguments bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_ollama import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model="llama2") # Without bind. chain = llm | StrOutputParser() chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = llm.bind(stop=["three"]) | StrOutputParser() chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two'
- close() None[source]#
Close the resources used by the MongoDBAtlasParentDocumentRetriever.
- Return type:
None
- configurable_alternatives(
- which: ConfigurableField,
- *,
- default_key: str = 'default',
- prefix_keys: bool = False,
- **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
Configure alternatives for
Runnablesthat can be set at runtime.- Parameters:
which (ConfigurableField) β The
ConfigurableFieldinstance that will be used to select the alternative.default_key (str) β The default key to use if no alternative is selected. Defaults to
'default'.prefix_keys (bool) β Whether to prefix the keys with the
ConfigurableFieldid. Defaults to False.**kwargs (Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) β A dictionary of keys to
Runnableinstances or callables that returnRunnableinstances.
- Returns:
A new
Runnablewith the alternatives configured.- Return type:
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-7-sonnet-20250219" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI(), ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config(configurable={"llm": "openai"}) .invoke("which organization created you?") .content )
- configurable_fields( ) RunnableSerializable#
Configure particular
Runnablefields at runtime.- Parameters:
**kwargs (ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) β A dictionary of
ConfigurableFieldinstances to configure.- Raises:
ValueError β If a configuration key is not found in the
Runnable.- Returns:
A new
Runnablewith the fields configured.- Return type:
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print( "max_tokens_200: ", model.with_config(configurable={"output_token_number": 200}) .invoke("tell me something about chess") .content, )
- get_relevant_documents(
- query: str,
- *,
- callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None,
- tags: list[str] | None = None,
- metadata: dict[str, Any] | None = None,
- run_name: str | None = None,
- **kwargs: Any,
Deprecated since version 0.1.46: Use
invoke()instead. It will not be removed until langchain-core==1.0.Retrieve documents relevant to a query.
Users should favor using .invoke or .batch rather than get_relevant_documents directly.
- Parameters:
query (str) β string to find relevant documents for.
callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) β Callback manager or list of callbacks. Defaults to None.
tags (list[str] | None) β Optional list of tags associated with the retriever. These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.
metadata (dict[str, Any] | None) β Optional metadata associated with the retriever. This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Defaults to None.
run_name (str | None) β Optional name for the run. Defaults to None.
kwargs (Any) β Additional arguments to pass to the retriever.
- Returns:
List of relevant documents.
- Return type:
list[Document]
- invoke(
- input: str,
- config: RunnableConfig | None = None,
- **kwargs: Any,
Invoke the retriever to get relevant documents.
Main entry point for synchronous retriever invocations.
- Parameters:
input (str) β The query string.
config (RunnableConfig | None) β Configuration for the retriever. Defaults to None.
kwargs (Any) β Additional arguments to pass to the retriever.
- Returns:
List of relevant documents.
- Return type:
list[Document]
Examples:
retriever.invoke("query")
- stream(
- input: Input,
- config: RunnableConfig | None = None,
- **kwargs: Any | None,
Default implementation of
stream, which callsinvoke.Subclasses should override this method if they support streaming output.
- Parameters:
input (Input) β The input to the
Runnable.config (RunnableConfig | None) β The config to use for the
Runnable. Defaults to None.kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Yields:
The output of the
Runnable.- Return type:
Iterator[Output]
- with_alisteners(
- *,
- on_start: AsyncListener | None = None,
- on_end: AsyncListener | None = None,
- on_error: AsyncListener | None = None,
Bind async lifecycle listeners to a
Runnable.Returns a new
Runnable.The Run object contains information about the run, including its
id,type,input,output,error,start_time,end_time, and any tags or metadata added to the run.- Parameters:
on_start (Optional[AsyncListener]) β Called asynchronously before the
Runnablestarts running, with theRunobject. Defaults to None.on_end (Optional[AsyncListener]) β Called asynchronously after the
Runnablefinishes running, with theRunobject. Defaults to None.on_error (Optional[AsyncListener]) β Called asynchronously if the
Runnablethrows an error, with theRunobject. Defaults to None.
- Returns:
A new
Runnablewith the listeners bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda, Runnable from datetime import datetime, timezone import time import asyncio def format_t(timestamp: float) -> str: return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat() async def test_runnable(time_to_sleep : int): print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}") await asyncio.sleep(time_to_sleep) print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}") async def fn_start(run_obj : Runnable): print(f"on start callback starts at {format_t(time.time())}") await asyncio.sleep(3) print(f"on start callback ends at {format_t(time.time())}") async def fn_end(run_obj : Runnable): print(f"on end callback starts at {format_t(time.time())}") await asyncio.sleep(2) print(f"on end callback ends at {format_t(time.time())}") runnable = RunnableLambda(test_runnable).with_alisteners( on_start=fn_start, on_end=fn_end ) async def concurrent_runs(): await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3)) asyncio.run(concurrent_runs()) Result: on start callback starts at 2025-03-01T07:05:22.875378+00:00 on start callback starts at 2025-03-01T07:05:22.875495+00:00 on start callback ends at 2025-03-01T07:05:25.878862+00:00 on start callback ends at 2025-03-01T07:05:25.878947+00:00 Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00 Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00 Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00 on end callback starts at 2025-03-01T07:05:27.882360+00:00 Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00 on end callback starts at 2025-03-01T07:05:28.882428+00:00 on end callback ends at 2025-03-01T07:05:29.883893+00:00 on end callback ends at 2025-03-01T07:05:30.884831+00:00
- with_config(
- config: RunnableConfig | None = None,
- **kwargs: Any,
Bind config to a
Runnable, returning a newRunnable.- Parameters:
config (RunnableConfig | None) β The config to bind to the
Runnable.kwargs (Any) β Additional keyword arguments to pass to the
Runnable.
- Returns:
A new
Runnablewith the config bound.- Return type:
Runnable[Input, Output]
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: tuple[type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) RunnableWithFallbacksT[Input, Output]#
Add fallbacks to a
Runnable, returning a newRunnable.The new
Runnablewill try the originalRunnable, and then each fallback in order, upon failures.- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) β A sequence of runnables to try if the original
Runnablefails.exceptions_to_handle (tuple[type[BaseException], ...]) β A tuple of exception types to handle. Defaults to
(Exception,).exception_key (Optional[str]) β If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base
Runnableand its fallbacks must accept a dictionary as input. Defaults to None.
- Returns:
A new
Runnablethat will try the originalRunnable, and then each fallback in order, upon failures.- Return type:
RunnableWithFallbacksT[Input, Output]
Example
from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print("".join(runnable.stream({}))) # foo bar
- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) β A sequence of runnables to try if the original
Runnablefails.exceptions_to_handle (tuple[type[BaseException], ...]) β A tuple of exception types to handle.
exception_key (Optional[str]) β If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base
Runnableand its fallbacks must accept a dictionary as input.
- Returns:
A new
Runnablethat will try the originalRunnable, and then each fallback in order, upon failures.- Return type:
RunnableWithFallbacksT[Input, Output]
- with_listeners(
- *,
- on_start: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
- on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
- on_error: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
Bind lifecycle listeners to a
Runnable, returning a newRunnable.The Run object contains information about the run, including its
id,type,input,output,error,start_time,end_time, and any tags or metadata added to the run.- Parameters:
on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) β Called before the
Runnablestarts running, with theRunobject. Defaults to None.on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) β Called after the
Runnablefinishes running, with theRunobject. Defaults to None.on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) β Called if the
Runnablethrows an error, with theRunobject. Defaults to None.
- Returns:
A new
Runnablewith the listeners bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep: int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2)
- with_retry(*, retry_if_exception_type: tuple[type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, exponential_jitter_params: Optional[ExponentialJitterParams] = None, stop_after_attempt: int = 3) Runnable[Input, Output]#
Create a new Runnable that retries the original Runnable on exceptions.
- Parameters:
retry_if_exception_type (tuple[type[BaseException], ...]) β A tuple of exception types to retry on. Defaults to (Exception,).
wait_exponential_jitter (bool) β Whether to add jitter to the wait time between retries. Defaults to True.
stop_after_attempt (int) β The maximum number of attempts to make before giving up. Defaults to 3.
exponential_jitter_params (Optional[ExponentialJitterParams]) β Parameters for
tenacity.wait_exponential_jitter. Namely:initial,max,exp_base, andjitter(all float values).
- Returns:
A new Runnable that retries the original Runnable on exceptions.
- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert count == 2
- with_types(
- *,
- input_type: type[Input] | None = None,
- output_type: type[Output] | None = None,
Bind input and output types to a
Runnable, returning a newRunnable.- Parameters:
input_type (type[Input] | None) β The input type to bind to the
Runnable. Defaults to None.output_type (type[Output] | None) β The output type to bind to the
Runnable. Defaults to None.
- Returns:
A new Runnable with the types bound.
- Return type:
Runnable[Input, Output]