Databricks#
- class langchain_community.llms.databricks.Databricks[source]#
Bases:
LLMDeprecated since version 0.3.3: Use
:class:`~databricks_langchain.ChatDatabricks`instead. It will not be removed until langchain-community==1.0.Databricks serving endpoint or a cluster driver proxy app for LLM.
It supports two endpoint types:
Serving endpoint (recommended for both production and development). We assume that an LLM was deployed to a serving endpoint. To wrap it as an LLM you must have βCan Queryβ permission to the endpoint. Set
endpoint_nameaccordingly and do not setcluster_idandcluster_driver_port.If the underlying model is a model registered by MLflow, the expected model signature is:
inputs:
[{"name": "prompt", "type": "string"}, {"name": "stop", "type": "list[string]"}]
outputs:
[{"type": "string"}]
If the underlying model is an external or foundation model, the response from the endpoint is automatically transformed to the expected format unless
transform_output_fnis provided.Cluster driver proxy app (recommended for interactive development). One can load an LLM on a Databricks interactive cluster and start a local HTTP server on the driver node to serve the model at
/using HTTP POST method with JSON input/output. Please use a port number between[3000, 8000]and let the server listen to the driver IP address or simply0.0.0.0instead of localhost only. To wrap it as an LLM you must have βCan Attach Toβ permission to the cluster. Setcluster_idandcluster_driver_portand do not setendpoint_name. The expected server schema (using JSON schema) is:inputs:
{"type": "object", "properties": { "prompt": {"type": "string"}, "stop": {"type": "array", "items": {"type": "string"}}}, "required": ["prompt"]}`outputs:
{"type": "string"}
If the endpoint model signature is different or you want to set extra params, you can use transform_input_fn and transform_output_fn to apply necessary transformations before and after the query.
Note
Databricks implements the standard
Runnable Interface. πThe
Runnable Interfacehas additional methods that are available on runnables, such aswith_config,with_types,with_retry,assign,bind,get_graph, and more.- param allow_dangerous_deserialization: bool = False#
Whether to allow dangerous deserialization of the data which involves loading data using pickle.
If the data has been modified by a malicious actor, it can deliver a malicious payload that results in execution of arbitrary code on the target machine.
- param api_token: str [Optional]#
Databricks personal access token. If not provided, the default value is determined by
the
DATABRICKS_TOKENenvironment variable if present, oran automatically generated temporary token if running inside a Databricks notebook attached to an interactive cluster in βsingle userβ or βno isolation sharedβ mode.
- param cache: BaseCache | bool | None = None#
Whether to cache the response.
If true, will use the global cache.
If false, will not use a cache
If None, will use the global cache if itβs set, otherwise no cache.
If instance of
BaseCache, will use the provided cache.
Caching is not currently supported for streaming methods of models.
- param callback_manager: BaseCallbackManager | None = None#
[DEPRECATED]
- param callbacks: Callbacks = None#
Callbacks to add to the run trace.
- param cluster_driver_port: str | None = None#
The port number used by the HTTP server running on the cluster driver node. The server should listen on the driver IP address or simply
0.0.0.0to connect. We recommend the server using a port number between[3000, 8000].
- param cluster_id: str | None = None#
ID of the cluster if connecting to a cluster driver proxy app. If neither
endpoint_namenorcluster_idis not provided and the code runs inside a Databricks notebook attached to an interactive cluster in βsingle userβ or βno isolation sharedβ mode, the current cluster ID is used as default. You must not set bothendpoint_nameandcluster_id.
- param custom_get_token_ids: Callable[[str], list[int]] | None = None#
Optional encoder to use for counting tokens.
- param databricks_uri: str = 'databricks'#
The databricks URI. Only used when using a serving endpoint.
- param endpoint_name: str | None = None#
Name of the model serving endpoint. You must specify the endpoint name to connect to a model serving endpoint. You must not set both
endpoint_nameandcluster_id.
- param extra_params: Dict[str, Any] [Optional]#
Any extra parameters to pass to the endpoint.
- param host: str [Optional]#
Databricks workspace hostname. If not provided, the default value is determined by
the
DATABRICKS_HOSTenvironment variable if present, orthe hostname of the current Databricks workspace if running inside a Databricks notebook attached to an interactive cluster in βsingle userβ or βno isolation sharedβ mode.
- param max_tokens: int | None = None#
The maximum number of tokens to generate.
- param metadata: dict[str, Any] | None = None#
Metadata to add to the run trace.
- param model_kwargs: Dict[str, Any] | None = None#
Deprecated. Please use
extra_paramsinstead. Extra parameters to pass to the endpoint.
- param n: int = 1#
The number of completion choices to generate.
- param stop: List[str] | None = None#
The stop sequence.
- param tags: list[str] | None = None#
Tags to add to the run trace.
- param task: str | None = None#
The task of the endpoint. Only used when using a serving endpoint. If not provided, the task is automatically inferred from the endpoint.
- param temperature: float = 0.0#
The sampling temperature.
- param transform_input_fn: Callable | None = None#
A function that transforms
{prompt, stop, **kwargs}into a JSON-compatible request object that the endpoint accepts. For example, you can apply a prompt template to the input prompt.
- param transform_output_fn: Callable[[...], str] | None = None#
A function that transforms the output from the endpoint to the generated text.
- param verbose: bool [Optional]#
Whether to print out response text.
- __call__(
- prompt: str,
- stop: list[str] | None = None,
- callbacks: list[BaseCallbackHandler] | BaseCallbackManager | None = None,
- *,
- tags: list[str] | None = None,
- metadata: dict[str, Any] | None = None,
- **kwargs: Any,
Deprecated since version 0.1.7: Use
invoke()instead. It will not be removed until langchain-core==1.0.Check Cache and run the LLM on the given prompt and input.
- Parameters:
prompt (str) β The prompt to generate from.
stop (list[str] | None) β Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
callbacks (list[BaseCallbackHandler] | BaseCallbackManager | None) β Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation.
tags (list[str] | None) β List of tags to associate with the prompt.
metadata (dict[str, Any] | None) β Metadata to associate with the prompt.
**kwargs (Any) β Arbitrary additional keyword arguments. These are usually passed to the model provider API call.
- Returns:
The generated text.
- Raises:
ValueError β If the prompt is not a string.
- Return type:
str
- async abatch(
- inputs: list[PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]]],
- config: RunnableConfig | list[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any,
Default implementation runs
ainvokein parallel usingasyncio.gather.The default implementation of
batchworks well for IO bound runnables.Subclasses should override this method if they can batch more efficiently; e.g., if the underlying
Runnableuses an API which supports a batch mode.- Parameters:
inputs (list[PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]]]) β A list of inputs to the
Runnable.config (RunnableConfig | list[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
**kwargs (Any) β Additional keyword arguments to pass to the
Runnable.
- Returns:
A list of outputs from the
Runnable.- Return type:
list[str]
- async abatch_as_completed(
- inputs: Sequence[Input],
- config: RunnableConfig | Sequence[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Run
ainvokein parallel on a list of inputs.Yields results as they complete.
- Parameters:
inputs (Sequence[Input]) β A list of inputs to the
Runnable.config (RunnableConfig | Sequence[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Yields:
A tuple of the index of the input and the output from the
Runnable.- Return type:
AsyncIterator[tuple[int, Output | Exception]]
- async ainvoke(
- input: PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]],
- config: RunnableConfig | None = None,
- *,
- stop: list[str] | None = None,
- **kwargs: Any,
Transform a single input into an output.
- Parameters:
input (PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]]) β The input to the
Runnable.config (RunnableConfig | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.stop (list[str] | None)
kwargs (Any)
- Returns:
The output of the
Runnable.- Return type:
str
- async astream(
- input: PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]],
- config: RunnableConfig | None = None,
- *,
- stop: list[str] | None = None,
- **kwargs: Any,
Default implementation of
astream, which callsainvoke.Subclasses should override this method if they support streaming output.
- Parameters:
input (PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]]) β The input to the
Runnable.config (RunnableConfig | None) β The config to use for the
Runnable. Defaults to None.kwargs (Any) β Additional keyword arguments to pass to the
Runnable.stop (list[str] | None)
- Yields:
The output of the
Runnable.- Return type:
AsyncIterator[str]
- async astream_events(
- input: Any,
- config: RunnableConfig | None = None,
- *,
- version: Literal['v1', 'v2'] = 'v2',
- include_names: Sequence[str] | None = None,
- include_types: Sequence[str] | None = None,
- include_tags: Sequence[str] | None = None,
- exclude_names: Sequence[str] | None = None,
- exclude_types: Sequence[str] | None = None,
- exclude_tags: Sequence[str] | None = None,
- **kwargs: Any,
Generate a stream of events.
Use to create an iterator over
StreamEventsthat provide real-time information about the progress of theRunnable, includingStreamEventsfrom intermediate results.A
StreamEventis a dictionary with the following schema:event: str - Event names are of the format:on_[runnable_type]_(start|stream|end).name: str - The name of theRunnablethat generated the event.run_id: str - randomly generated ID associated with the given execution of theRunnablethat emitted the event. A childRunnablethat gets invoked as part of the execution of a parentRunnableis assigned its own unique ID.parent_ids: list[str] - The IDs of the parent runnables that generated the event. The rootRunnablewill have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags: Optional[list[str]] - The tags of theRunnablethat generated the event.metadata: Optional[dict[str, Any]] - The metadata of theRunnablethat generated the event.data: dict[str, Any]
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
event
name
chunk
input
output
on_chat_model_start[model name]
{"messages": [[SystemMessage, HumanMessage]]}on_chat_model_stream[model name]
AIMessageChunk(content="hello")on_chat_model_end[model name]
{"messages": [[SystemMessage, HumanMessage]]}AIMessageChunk(content="hello world")on_llm_start[model name]
{'input': 'hello'}on_llm_stream[model name]
``βHelloβ ``
on_llm_end[model name]
'Hello human!'on_chain_startformat_docs
on_chain_streamformat_docs
'hello world!, goodbye world!'on_chain_endformat_docs
[Document(...)]'hello world!, goodbye world!'on_tool_startsome_tool
{"x": 1, "y": "2"}on_tool_endsome_tool
{"x": 1, "y": "2"}on_retriever_start[retriever name]
{"query": "hello"}on_retriever_end[retriever name]
{"query": "hello"}[Document(...), ..]on_prompt_start[template_name]
{"question": "hello"}on_prompt_end[template_name]
{"question": "hello"}ChatPromptValue(messages: [SystemMessage, ...])In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute
Type
Description
name
str
A user defined name for the event.
data
Any
The data associated with the event. This can be anything, though we suggest making it JSON serializable.
Here are declarations associated with the standard events shown above:
format_docs:def format_docs(docs: list[Document]) -> str: '''Format the docs.''' return ", ".join([doc.page_content for doc in docs]) format_docs = RunnableLambda(format_docs)
some_tool:@tool def some_tool(x: int, y: str) -> dict: '''Some_tool.''' return {"x": x, "y": y}
prompt:template = ChatPromptTemplate.from_messages( [ ("system", "You are Cat Agent 007"), ("human", "{question}"), ] ).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
from langchain_core.runnables import RunnableLambda async def reverse(s: str) -> str: return s[::-1] chain = RunnableLambda(func=reverse) events = [ event async for event in chain.astream_events("hello", version="v2") ] # will produce the following events (run_id, and parent_ids # has been omitted for brevity): [ { "data": {"input": "hello"}, "event": "on_chain_start", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"chunk": "olleh"}, "event": "on_chain_stream", "metadata": {}, "name": "reverse", "tags": [], }, { "data": {"output": "olleh"}, "event": "on_chain_end", "metadata": {}, "name": "reverse", "tags": [], }, ]
Example: Dispatch Custom Event
from langchain_core.callbacks.manager import ( adispatch_custom_event, ) from langchain_core.runnables import RunnableLambda, RunnableConfig import asyncio async def slow_thing(some_input: str, config: RunnableConfig) -> str: """Do something that takes a long time.""" await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 1 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation await adispatch_custom_event( "progress_event", {"message": "Finished step 2 of 3"}, config=config # Must be included for python < 3.10 ) await asyncio.sleep(1) # Placeholder for some slow operation return "Done" slow_thing = RunnableLambda(slow_thing) async for event in slow_thing.astream_events("some_input", version="v2"): print(event)
- Parameters:
input (Any) β The input to the
Runnable.config (Optional[RunnableConfig]) β The config to use for the
Runnable.version (Literal['v1', 'v2']) β The version of the schema to use either
'v2'or'v1'. Users should use'v2'.'v1'is for backwards compatibility and will be deprecated in 0.4.0. No default will be assigned until the API is stabilized. custom events will only be surfaced in'v2'.include_names (Optional[Sequence[str]]) β Only include events from
Runnableswith matching names.include_types (Optional[Sequence[str]]) β Only include events from
Runnableswith matching types.include_tags (Optional[Sequence[str]]) β Only include events from
Runnableswith matching tags.exclude_names (Optional[Sequence[str]]) β Exclude events from
Runnableswith matching names.exclude_types (Optional[Sequence[str]]) β Exclude events from
Runnableswith matching types.exclude_tags (Optional[Sequence[str]]) β Exclude events from
Runnableswith matching tags.kwargs (Any) β Additional keyword arguments to pass to the
Runnable. These will be passed toastream_logas this implementation ofastream_eventsis built on top ofastream_log.
- Yields:
An async stream of
StreamEvents.- Raises:
NotImplementedError β If the version is not
'v1'or'v2'.- Return type:
AsyncIterator[StreamEvent]
- batch(
- inputs: list[PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]]],
- config: RunnableConfig | list[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any,
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently; e.g., if the underlying
Runnableuses an API which supports a batch mode.- Parameters:
inputs (list[PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]]]) β A list of inputs to the
Runnable.config (RunnableConfig | list[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
**kwargs (Any) β Additional keyword arguments to pass to the
Runnable.
- Returns:
A list of outputs from the
Runnable.- Return type:
list[str]
- batch_as_completed(
- inputs: Sequence[Input],
- config: RunnableConfig | Sequence[RunnableConfig] | None = None,
- *,
- return_exceptions: bool = False,
- **kwargs: Any | None,
Run
invokein parallel on a list of inputs.Yields results as they complete.
- Parameters:
inputs (Sequence[Input]) β A list of inputs to the
Runnable.config (RunnableConfig | Sequence[RunnableConfig] | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.return_exceptions (bool) β Whether to return exceptions instead of raising them. Defaults to False.
**kwargs (Any | None) β Additional keyword arguments to pass to the
Runnable.
- Yields:
Tuples of the index of the input and the output from the
Runnable.- Return type:
Iterator[tuple[int, Output | Exception]]
- bind(
- **kwargs: Any,
Bind arguments to a
Runnable, returning a newRunnable.Useful when a
Runnablein a chain requires an argument that is not in the output of the previousRunnableor included in the user input.- Parameters:
kwargs (Any) β The arguments to bind to the
Runnable.- Returns:
A new
Runnablewith the arguments bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_ollama import ChatOllama from langchain_core.output_parsers import StrOutputParser llm = ChatOllama(model="llama2") # Without bind. chain = llm | StrOutputParser() chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two three four five.' # With bind. chain = llm.bind(stop=["three"]) | StrOutputParser() chain.invoke("Repeat quoted words exactly: 'One two three four five.'") # Output is 'One two'
- configurable_alternatives(
- which: ConfigurableField,
- *,
- default_key: str = 'default',
- prefix_keys: bool = False,
- **kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
Configure alternatives for
Runnablesthat can be set at runtime.- Parameters:
which (ConfigurableField) β The
ConfigurableFieldinstance that will be used to select the alternative.default_key (str) β The default key to use if no alternative is selected. Defaults to
'default'.prefix_keys (bool) β Whether to prefix the keys with the
ConfigurableFieldid. Defaults to False.**kwargs (Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]) β A dictionary of keys to
Runnableinstances or callables that returnRunnableinstances.
- Returns:
A new
Runnablewith the alternatives configured.- Return type:
from langchain_anthropic import ChatAnthropic from langchain_core.runnables.utils import ConfigurableField from langchain_openai import ChatOpenAI model = ChatAnthropic( model_name="claude-3-7-sonnet-20250219" ).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI(), ) # uses the default model ChatAnthropic print(model.invoke("which organization created you?").content) # uses ChatOpenAI print( model.with_config(configurable={"llm": "openai"}) .invoke("which organization created you?") .content )
- configurable_fields( ) RunnableSerializable#
Configure particular
Runnablefields at runtime.- Parameters:
**kwargs (ConfigurableField | ConfigurableFieldSingleOption | ConfigurableFieldMultiOption) β A dictionary of
ConfigurableFieldinstances to configure.- Raises:
ValueError β If a configuration key is not found in the
Runnable.- Returns:
A new
Runnablewith the fields configured.- Return type:
from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(max_tokens=20).configurable_fields( max_tokens=ConfigurableField( id="output_token_number", name="Max tokens in the output", description="The maximum number of tokens in the output", ) ) # max_tokens = 20 print( "max_tokens_20: ", model.invoke("tell me something about chess").content ) # max_tokens = 200 print( "max_tokens_200: ", model.with_config(configurable={"output_token_number": 200}) .invoke("tell me something about chess") .content, )
- get_num_tokens(text: str) int#
Get the number of tokens present in the text.
Useful for checking if an input fits in a modelβs context window.
- Parameters:
text (str) β The string input to tokenize.
- Returns:
The integer number of tokens in the text.
- Return type:
int
- get_num_tokens_from_messages(
- messages: list[BaseMessage],
- tools: Sequence | None = None,
Get the number of tokens in the messages.
Useful for checking if an input fits in a modelβs context window.
Note
The base implementation of
get_num_tokens_from_messagesignores tool schemas.- Parameters:
messages (list[BaseMessage]) β The message inputs to tokenize.
tools (Sequence | None) β If provided, sequence of dict,
BaseModel, function, orBaseToolsto be converted to tool schemas.
- Returns:
The sum of the number of tokens across the messages.
- Return type:
int
- get_token_ids(text: str) list[int]#
Return the ordered ids of the tokens in a text.
- Parameters:
text (str) β The string input to tokenize.
- Returns:
A list of ids corresponding to the tokens in the text, in order they occur in the text.
- Return type:
list[int]
- invoke(
- input: PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]],
- config: RunnableConfig | None = None,
- *,
- stop: list[str] | None = None,
- **kwargs: Any,
Transform a single input into an output.
- Parameters:
input (PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]]) β The input to the
Runnable.config (RunnableConfig | None) β A config to use when invoking the
Runnable. The config supports standard keys like'tags','metadata'for tracing purposes,'max_concurrency'for controlling how much work to do in parallel, and other keys. Please refer to theRunnableConfigfor more details. Defaults to None.stop (list[str] | None)
kwargs (Any)
- Returns:
The output of the
Runnable.- Return type:
str
- save(file_path: Path | str) None#
Save the LLM.
- Parameters:
file_path (Path | str) β Path to file to save the LLM to.
- Raises:
ValueError β If the file path is not a string or Path object.
- Return type:
None
Example
llm.save(file_path="path/llm.yaml")
- stream(
- input: PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]],
- config: RunnableConfig | None = None,
- *,
- stop: list[str] | None = None,
- **kwargs: Any,
Default implementation of
stream, which callsinvoke.Subclasses should override this method if they support streaming output.
- Parameters:
input (PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]]) β The input to the
Runnable.config (RunnableConfig | None) β The config to use for the
Runnable. Defaults to None.kwargs (Any) β Additional keyword arguments to pass to the
Runnable.stop (list[str] | None)
- Yields:
The output of the
Runnable.- Return type:
Iterator[str]
- with_alisteners(
- *,
- on_start: AsyncListener | None = None,
- on_end: AsyncListener | None = None,
- on_error: AsyncListener | None = None,
Bind async lifecycle listeners to a
Runnable.Returns a new
Runnable.The Run object contains information about the run, including its
id,type,input,output,error,start_time,end_time, and any tags or metadata added to the run.- Parameters:
on_start (Optional[AsyncListener]) β Called asynchronously before the
Runnablestarts running, with theRunobject. Defaults to None.on_end (Optional[AsyncListener]) β Called asynchronously after the
Runnablefinishes running, with theRunobject. Defaults to None.on_error (Optional[AsyncListener]) β Called asynchronously if the
Runnablethrows an error, with theRunobject. Defaults to None.
- Returns:
A new
Runnablewith the listeners bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda, Runnable from datetime import datetime, timezone import time import asyncio def format_t(timestamp: float) -> str: return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat() async def test_runnable(time_to_sleep : int): print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}") await asyncio.sleep(time_to_sleep) print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}") async def fn_start(run_obj : Runnable): print(f"on start callback starts at {format_t(time.time())}") await asyncio.sleep(3) print(f"on start callback ends at {format_t(time.time())}") async def fn_end(run_obj : Runnable): print(f"on end callback starts at {format_t(time.time())}") await asyncio.sleep(2) print(f"on end callback ends at {format_t(time.time())}") runnable = RunnableLambda(test_runnable).with_alisteners( on_start=fn_start, on_end=fn_end ) async def concurrent_runs(): await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3)) asyncio.run(concurrent_runs()) Result: on start callback starts at 2025-03-01T07:05:22.875378+00:00 on start callback starts at 2025-03-01T07:05:22.875495+00:00 on start callback ends at 2025-03-01T07:05:25.878862+00:00 on start callback ends at 2025-03-01T07:05:25.878947+00:00 Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00 Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00 Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00 on end callback starts at 2025-03-01T07:05:27.882360+00:00 Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00 on end callback starts at 2025-03-01T07:05:28.882428+00:00 on end callback ends at 2025-03-01T07:05:29.883893+00:00 on end callback ends at 2025-03-01T07:05:30.884831+00:00
- with_config(
- config: RunnableConfig | None = None,
- **kwargs: Any,
Bind config to a
Runnable, returning a newRunnable.- Parameters:
config (RunnableConfig | None) β The config to bind to the
Runnable.kwargs (Any) β Additional keyword arguments to pass to the
Runnable.
- Returns:
A new
Runnablewith the config bound.- Return type:
Runnable[Input, Output]
- with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: tuple[type[BaseException], ...] = (<class 'Exception'>,), exception_key: Optional[str] = None) RunnableWithFallbacksT[Input, Output]#
Add fallbacks to a
Runnable, returning a newRunnable.The new
Runnablewill try the originalRunnable, and then each fallback in order, upon failures.- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) β A sequence of runnables to try if the original
Runnablefails.exceptions_to_handle (tuple[type[BaseException], ...]) β A tuple of exception types to handle. Defaults to
(Exception,).exception_key (Optional[str]) β If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base
Runnableand its fallbacks must accept a dictionary as input. Defaults to None.
- Returns:
A new
Runnablethat will try the originalRunnable, and then each fallback in order, upon failures.- Return type:
RunnableWithFallbacksT[Input, Output]
Example
from typing import Iterator from langchain_core.runnables import RunnableGenerator def _generate_immediate_error(input: Iterator) -> Iterator[str]: raise ValueError() yield "" def _generate(input: Iterator) -> Iterator[str]: yield from "foo bar" runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks( [RunnableGenerator(_generate)] ) print("".join(runnable.stream({}))) # foo bar
- Parameters:
fallbacks (Sequence[Runnable[Input, Output]]) β A sequence of runnables to try if the original
Runnablefails.exceptions_to_handle (tuple[type[BaseException], ...]) β A tuple of exception types to handle.
exception_key (Optional[str]) β If string is specified then handled exceptions will be passed to fallbacks as part of the input under the specified key. If None, exceptions will not be passed to fallbacks. If used, the base
Runnableand its fallbacks must accept a dictionary as input.
- Returns:
A new
Runnablethat will try the originalRunnable, and then each fallback in order, upon failures.- Return type:
RunnableWithFallbacksT[Input, Output]
- with_listeners(
- *,
- on_start: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
- on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
- on_error: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
Bind lifecycle listeners to a
Runnable, returning a newRunnable.The Run object contains information about the run, including its
id,type,input,output,error,start_time,end_time, and any tags or metadata added to the run.- Parameters:
on_start (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) β Called before the
Runnablestarts running, with theRunobject. Defaults to None.on_end (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) β Called after the
Runnablefinishes running, with theRunobject. Defaults to None.on_error (Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]) β Called if the
Runnablethrows an error, with theRunobject. Defaults to None.
- Returns:
A new
Runnablewith the listeners bound.- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda from langchain_core.tracers.schemas import Run import time def test_runnable(time_to_sleep: int): time.sleep(time_to_sleep) def fn_start(run_obj: Run): print("start_time:", run_obj.start_time) def fn_end(run_obj: Run): print("end_time:", run_obj.end_time) chain = RunnableLambda(test_runnable).with_listeners( on_start=fn_start, on_end=fn_end ) chain.invoke(2)
- with_retry(*, retry_if_exception_type: tuple[type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, exponential_jitter_params: Optional[ExponentialJitterParams] = None, stop_after_attempt: int = 3) Runnable[Input, Output]#
Create a new Runnable that retries the original Runnable on exceptions.
- Parameters:
retry_if_exception_type (tuple[type[BaseException], ...]) β A tuple of exception types to retry on. Defaults to (Exception,).
wait_exponential_jitter (bool) β Whether to add jitter to the wait time between retries. Defaults to True.
stop_after_attempt (int) β The maximum number of attempts to make before giving up. Defaults to 3.
exponential_jitter_params (Optional[ExponentialJitterParams]) β Parameters for
tenacity.wait_exponential_jitter. Namely:initial,max,exp_base, andjitter(all float values).
- Returns:
A new Runnable that retries the original Runnable on exceptions.
- Return type:
Runnable[Input, Output]
Example:
from langchain_core.runnables import RunnableLambda count = 0 def _lambda(x: int) -> None: global count count = count + 1 if x == 1: raise ValueError("x is 1") else: pass runnable = RunnableLambda(_lambda) try: runnable.with_retry( stop_after_attempt=2, retry_if_exception_type=(ValueError,), ).invoke(1) except ValueError: pass assert count == 2
- with_structured_output(
- schema: dict | type,
- **kwargs: Any,
Not implemented on this class.
- Parameters:
schema (dict | type)
kwargs (Any)
- Return type:
Runnable[PromptValue | str | Sequence[BaseMessage | list[str] | tuple[str, str] | str | dict[str, Any]], dict | BaseModel]
- with_types(
- *,
- input_type: type[Input] | None = None,
- output_type: type[Output] | None = None,
Bind input and output types to a
Runnable, returning a newRunnable.- Parameters:
input_type (type[Input] | None) β The input type to bind to the
Runnable. Defaults to None.output_type (type[Output] | None) β The output type to bind to the
Runnable. Defaults to None.
- Returns:
A new Runnable with the types bound.
- Return type:
Runnable[Input, Output]
Examples using Databricks