Async Client¶
langsmith.async_client
¶
The Async LangSmith Client.
AsyncClient
¶
Async Client for interacting with the LangSmith API.
METHOD | DESCRIPTION |
---|---|
__init__ |
Initialize the async client. |
__aenter__ |
Enter the async client. |
__aexit__ |
Exit the async client. |
aclose |
Close the async client. |
create_run |
Create a run. |
update_run |
Update a run. |
read_run |
Read a run. |
list_runs |
List runs from the LangSmith API. |
share_run |
Get a share link for a run asynchronously. |
run_is_shared |
Get share state for a run asynchronously. |
read_run_shared_link |
Retrieve the shared link for a specific run asynchronously. |
create_project |
Create a project. |
read_project |
Read a project. |
delete_project |
Delete a project from LangSmith. |
create_dataset |
Create a dataset. |
read_dataset |
Read a dataset. |
delete_dataset |
Delete a dataset. |
list_datasets |
List datasets. |
create_example |
Create an example. |
read_example |
Read an example. |
list_examples |
List examples. |
create_feedback |
Create feedback for a run. |
create_feedback_from_token |
Create feedback from a presigned token or URL. |
create_presigned_feedback_token |
Create a pre-signed URL to send feedback data to. |
read_feedback |
Read feedback. |
list_feedback |
List feedback. |
delete_feedback |
Delete a feedback by ID. |
list_annotation_queues |
List the annotation queues on the LangSmith API. |
create_annotation_queue |
Create an annotation queue on the LangSmith API. |
read_annotation_queue |
Read an annotation queue with the specified queue ID. |
update_annotation_queue |
Update an annotation queue with the specified queue_id. |
delete_annotation_queue |
Delete an annotation queue with the specified queue ID. |
add_runs_to_annotation_queue |
Add runs to an annotation queue with the specified queue ID. |
delete_run_from_annotation_queue |
Delete a run from an annotation queue with the specified queue ID and run ID. |
get_run_from_annotation_queue |
Get a run from an annotation queue at the specified index. |
index_dataset |
Enable dataset indexing. Examples are indexed by their inputs. |
sync_indexed_dataset |
Sync dataset index. This already happens automatically every 5 minutes, but you can call this to force a sync. |
similar_examples |
Retrieve the dataset examples whose inputs best match the current inputs. |
like_prompt |
Like a prompt. |
unlike_prompt |
Unlike a prompt. |
list_prompts |
List prompts with pagination. |
get_prompt |
Get a specific prompt by its identifier. |
create_prompt |
Create a new prompt. |
create_commit |
Create a commit for an existing prompt. |
update_prompt |
Update a prompt's metadata. |
delete_prompt |
Delete a prompt. |
pull_prompt_commit |
Pull a prompt object from the LangSmith API. |
list_prompt_commits |
List commits for a given prompt. |
pull_prompt |
Pull a prompt and return it as a LangChain PromptTemplate. |
push_prompt |
Push a prompt to the LangSmith API. |
__init__
¶
__init__(
api_url: Optional[str] = None,
api_key: Optional[str] = None,
timeout_ms: Optional[
Union[int, tuple[Optional[int], Optional[int], Optional[int], Optional[int]]]
] = None,
retry_config: Optional[Mapping[str, Any]] = None,
web_url: Optional[str] = None,
)
Initialize the async client.
create_run
async
¶
create_run(
name: str,
inputs: dict[str, Any],
run_type: str,
*,
project_name: Optional[str] = None,
revision_id: Optional[ID_TYPE] = None,
**kwargs: Any,
) -> None
Create a run.
list_runs
async
¶
list_runs(
*,
project_id: Optional[Union[ID_TYPE, Sequence[ID_TYPE]]] = None,
project_name: Optional[Union[str, Sequence[str]]] = None,
run_type: Optional[str] = None,
trace_id: Optional[ID_TYPE] = None,
reference_example_id: Optional[ID_TYPE] = None,
query: Optional[str] = None,
filter: Optional[str] = None,
trace_filter: Optional[str] = None,
tree_filter: Optional[str] = None,
is_root: Optional[bool] = None,
parent_run_id: Optional[ID_TYPE] = None,
start_time: Optional[datetime] = None,
error: Optional[bool] = None,
run_ids: Optional[Sequence[ID_TYPE]] = None,
select: Optional[Sequence[str]] = None,
limit: Optional[int] = None,
**kwargs: Any,
) -> AsyncIterator[Run]
List runs from the LangSmith API.
Parameters¶
project_id : UUID or None, default=None
The ID(s) of the project to filter by.
project_name : str or None, default=None
The name(s) of the project to filter by.
run_type : str or None, default=None
The type of the runs to filter by.
trace_id : UUID or None, default=None
The ID of the trace to filter by.
reference_example_id : UUID or None, default=None
The ID of the reference example to filter by.
query : str or None, default=None
The query string to filter by.
filter : str or None, default=None
The filter string to filter by.
trace_filter : str or None, default=None
Filter to apply to the ROOT run in the trace tree. This is meant to
be used in conjunction with the regular filter
parameter to let you
filter runs by attributes of the root run within a trace.
tree_filter : str or None, default=None
Filter to apply to OTHER runs in the trace tree, including
sibling and child runs. This is meant to be used in conjunction with
the regular filter
parameter to let you filter runs by attributes
of any run within a trace.
is_root : bool or None, default=None
Whether to filter by root runs.
parent_run_id : UUID or None, default=None
The ID of the parent run to filter by.
start_time : datetime or None, default=None
The start time to filter by.
error : bool or None, default=None
Whether to filter by error status.
run_ids : List[str or UUID] or None, default=None
The IDs of the runs to filter by.
limit : int or None, default=None
The maximum number of runs to return.
**kwargs : Any
Additional keyword arguments.
Yields:¶
Run The runs.
Examples:¶
List all runs in a project:
.. code-block:: python
project_runs = client.list_runs(project_name="<your_project>")
List LLM and Chat runs in the last 24 hours:
.. code-block:: python
todays_llm_runs = client.list_runs(
project_name="<your_project>",
start_time=datetime.now() - timedelta(days=1),
run_type="llm",
)
List root traces in a project:
.. code-block:: python
root_runs = client.list_runs(project_name="<your_project>", is_root=1)
List runs without errors:
.. code-block:: python
correct_runs = client.list_runs(project_name="<your_project>", error=False)
List runs and only return their inputs/outputs (to speed up the query):
.. code-block:: python
input_output_runs = client.list_runs(
project_name="<your_project>", select=["inputs", "outputs"]
)
List runs by run ID:
.. code-block:: python
run_ids = [
"a36092d2-4ad5-4fb4-9c0d-0dba9a2ed836",
"9398e6be-964f-4aa4-8ae9-ad78cd4b7074",
]
selected_runs = client.list_runs(id=run_ids)
List all "chain" type runs that took more than 10 seconds and had
total_tokens
greater than 5000:
.. code-block:: python
chain_runs = client.list_runs(
project_name="<your_project>",
filter='and(eq(run_type, "chain"), gt(latency, 10), gt(total_tokens, 5000))',
)
List all runs called "extractor" whose root of the trace was assigned feedback "user_score" score of 1:
.. code-block:: python
good_extractor_runs = client.list_runs(
project_name="<your_project>",
filter='eq(name, "extractor")',
trace_filter='and(eq(feedback_key, "user_score"), eq(feedback_score, 1))',
)
List all runs that started after a specific timestamp and either have "error" not equal to null or a "Correctness" feedback score equal to 0:
.. code-block:: python
complex_runs = client.list_runs(
project_name="<your_project>",
filter='and(gt(start_time, "2023-07-15T12:34:56Z"), or(neq(error, null), and(eq(feedback_key, "Correctness"), eq(feedback_score, 0.0))))',
)
List all runs where tags
include "experimental" or "beta" and latency
is greater than 2 seconds:
.. code-block:: python
tagged_runs = client.list_runs(
project_name="<your_project>",
filter='and(or(has(tags, "experimental"), has(tags, "beta")), gt(latency, 2))',
)
share_run
async
¶
Get a share link for a run asynchronously.
PARAMETER | DESCRIPTION |
---|---|
run_id
|
The ID of the run to share.
TYPE:
|
share_id
|
Custom share ID. If not provided, a random UUID will be generated.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str
|
The URL of the shared run.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
HTTPStatusError
|
If the API request fails. |
run_is_shared
async
¶
run_is_shared(run_id: ID_TYPE) -> bool
Get share state for a run asynchronously.
read_run_shared_link
async
¶
Retrieve the shared link for a specific run asynchronously.
PARAMETER | DESCRIPTION |
---|---|
run_id
|
The ID of the run.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Optional[str]
|
Optional[str]: The shared link for the run, or None if the link is not |
Optional[str]
|
available. |
RAISES | DESCRIPTION |
---|---|
HTTPStatusError
|
If the API request fails. |
create_project
async
¶
create_project(project_name: str, **kwargs: Any) -> TracerSession
Create a project.
read_project
async
¶
read_project(
project_name: Optional[str] = None, project_id: Optional[ID_TYPE] = None
) -> TracerSession
Read a project.
delete_project
async
¶
Delete a project from LangSmith.
Parameters¶
project_name : str or None, default=None The name of the project to delete. project_id : str or None, default=None The ID of the project to delete.
create_dataset
async
¶
Create a dataset.
read_dataset
async
¶
Read a dataset.
create_example
async
¶
create_example(
inputs: dict[str, Any],
outputs: Optional[dict[str, Any]] = None,
dataset_id: Optional[ID_TYPE] = None,
dataset_name: Optional[str] = None,
**kwargs: Any,
) -> Example
Create an example.
list_examples
async
¶
list_examples(
*,
dataset_id: Optional[ID_TYPE] = None,
dataset_name: Optional[str] = None,
**kwargs: Any,
) -> AsyncIterator[Example]
List examples.
create_feedback
async
¶
create_feedback(
run_id: Optional[ID_TYPE],
key: str,
score: Optional[float] = None,
value: Optional[Any] = None,
comment: Optional[str] = None,
**kwargs: Any,
) -> Feedback
Create feedback for a run.
PARAMETER | DESCRIPTION |
---|---|
run_id
|
The ID of the run to provide feedback for. Can be None for project-level feedback.
TYPE:
|
key
|
The name of the metric or aspect this feedback is about.
TYPE:
|
score
|
The score to rate this run on the metric or aspect. |
value
|
The display value or non-numeric value for this feedback. |
comment
|
A comment about this feedback. |
**kwargs
|
Additional keyword arguments to include in the feedback data.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Feedback
|
ls_schemas.Feedback: The created feedback object. |
RAISES | DESCRIPTION |
---|---|
HTTPStatusError
|
If the API request fails. |
create_feedback_from_token
async
¶
create_feedback_from_token(
token_or_url: Union[str, UUID],
score: Union[float, int, bool, None] = None,
*,
value: Union[float, int, bool, str, dict, None] = None,
correction: Union[dict, None] = None,
comment: Union[str, None] = None,
metadata: Optional[dict] = None,
) -> None
Create feedback from a presigned token or URL.
PARAMETER | DESCRIPTION |
---|---|
token_or_url
|
The token or URL from which to create feedback. |
score
|
The score of the feedback. Defaults to None. |
value
|
The value of the feedback. Defaults to None.
TYPE:
|
correction
|
The correction of the feedback. Defaults to None. |
comment
|
The comment of the feedback. Defaults to None. |
metadata
|
Additional metadata for the feedback. Defaults to None. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the source API URL is invalid. |
RETURNS | DESCRIPTION |
---|---|
None
|
This method does not return anything.
TYPE:
|
create_presigned_feedback_token
async
¶
create_presigned_feedback_token(
run_id: ID_TYPE,
feedback_key: str,
*,
expiration: Optional[datetime | timedelta] = None,
feedback_config: Optional[FeedbackConfig] = None,
feedback_id: Optional[ID_TYPE] = None,
) -> FeedbackIngestToken
Create a pre-signed URL to send feedback data to.
This is useful for giving browser-based clients a way to upload feedback data directly to LangSmith without accessing the API key.
PARAMETER | DESCRIPTION |
---|---|
run_id
|
TYPE:
|
feedback_key
|
TYPE:
|
expiration
|
The expiration time of the pre-signed URL. Either a datetime or a timedelta offset from now. Default to 3 hours. |
feedback_config
|
FeedbackConfig or None. If creating a feedback_key for the first time, this defines how the metric should be interpreted, such as a continuous score (w/ optional bounds), or distribution over categorical values.
TYPE:
|
feedback_id
|
The ID of the feedback to create. If not provided, a new feedback will be created.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
FeedbackIngestToken
|
The pre-signed URL for uploading feedback data. |
list_feedback
async
¶
list_feedback(
*,
run_ids: Optional[Sequence[ID_TYPE]] = None,
feedback_key: Optional[Sequence[str]] = None,
feedback_source_type: Optional[Sequence[FeedbackSourceType]] = None,
limit: Optional[int] = None,
**kwargs: Any,
) -> AsyncIterator[Feedback]
List feedback.
delete_feedback
async
¶
list_annotation_queues
async
¶
list_annotation_queues(
*,
queue_ids: Optional[list[ID_TYPE]] = None,
name: Optional[str] = None,
name_contains: Optional[str] = None,
limit: Optional[int] = None,
) -> AsyncIterator[AnnotationQueue]
List the annotation queues on the LangSmith API.
PARAMETER | DESCRIPTION |
---|---|
queue_ids
|
The IDs of the queues to filter by. |
name
|
The name of the queue to filter by. |
name_contains
|
The substring that the queue name should contain. |
limit
|
The maximum number of queues to return. |
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[AnnotationQueue]
|
The annotation queues. |
create_annotation_queue
async
¶
create_annotation_queue(
*, name: str, description: Optional[str] = None, queue_id: Optional[ID_TYPE] = None
) -> AnnotationQueue
Create an annotation queue on the LangSmith API.
PARAMETER | DESCRIPTION |
---|---|
name
|
The name of the annotation queue.
TYPE:
|
description
|
The description of the annotation queue. |
queue_id
|
The ID of the annotation queue. |
RETURNS | DESCRIPTION |
---|---|
AnnotationQueue
|
The created annotation queue object.
TYPE:
|
read_annotation_queue
async
¶
read_annotation_queue(queue_id: ID_TYPE) -> AnnotationQueue
Read an annotation queue with the specified queue ID.
PARAMETER | DESCRIPTION |
---|---|
queue_id
|
The ID of the annotation queue to read. |
RETURNS | DESCRIPTION |
---|---|
AnnotationQueue
|
The annotation queue object.
TYPE:
|
update_annotation_queue
async
¶
update_annotation_queue(
queue_id: ID_TYPE, *, name: str, description: Optional[str] = None
) -> None
Update an annotation queue with the specified queue_id.
PARAMETER | DESCRIPTION |
---|---|
queue_id
|
The ID of the annotation queue to update. |
name
|
The new name for the annotation queue.
TYPE:
|
description
|
The new description for the annotation queue. Defaults to None. |
RETURNS | DESCRIPTION |
---|---|
None
|
None |
delete_annotation_queue
async
¶
add_runs_to_annotation_queue
async
¶
add_runs_to_annotation_queue(queue_id: ID_TYPE, *, run_ids: list[ID_TYPE]) -> None
delete_run_from_annotation_queue
async
¶
get_run_from_annotation_queue
async
¶
get_run_from_annotation_queue(
queue_id: ID_TYPE, *, index: int
) -> RunWithAnnotationQueueInfo
Get a run from an annotation queue at the specified index.
PARAMETER | DESCRIPTION |
---|---|
queue_id
|
The ID of the annotation queue. |
index
|
The index of the run to retrieve.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunWithAnnotationQueueInfo
|
The run at the specified index. |
RAISES | DESCRIPTION |
---|---|
LangSmithNotFoundError
|
If the run is not found at the given index. |
LangSmithError
|
For other API-related errors. |
index_dataset
async
¶
Enable dataset indexing. Examples are indexed by their inputs.
This enables searching for similar examples by inputs with
client.similar_examples()
.
PARAMETER | DESCRIPTION |
---|---|
dataset_id
|
The ID of the dataset to index.
TYPE:
|
tag
|
The version of the dataset to index. If 'latest' then any updates to the dataset (additions, updates, deletions of examples) will be reflected in the index.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
sync_indexed_dataset
async
¶
sync_indexed_dataset(*, dataset_id: ID_TYPE, **kwargs: Any) -> None
Sync dataset index. This already happens automatically every 5 minutes, but you can call this to force a sync.
PARAMETER | DESCRIPTION |
---|---|
dataset_id
|
The ID of the dataset to sync.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
None
|
None |
similar_examples
async
¶
similar_examples(
inputs: dict,
/,
*,
limit: int,
dataset_id: ID_TYPE,
filter: Optional[str] = None,
**kwargs: Any,
) -> list[ExampleSearch]
Retrieve the dataset examples whose inputs best match the current inputs.
Note: Must have few-shot indexing enabled for the dataset. See
client.index_dataset()
.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
The inputs to use as a search query. Must match the dataset input schema. Must be JSON serializable.
TYPE:
|
limit
|
The maximum number of examples to return.
TYPE:
|
dataset_id
|
The ID of the dataset to search over.
TYPE:
|
filter
|
A filter string to apply to the search results. Uses
the same syntax as the
TYPE:
|
kwargs
|
Additional keyword args to pass as part of request body.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[ExampleSearch]
|
List of ExampleSearch objects. |
Example
.. code-block:: python
from langsmith import Client
client = Client()
await client.similar_examples(
{"question": "When would i use the runnable generator"},
limit=3,
dataset_id="...",
)
.. code-block:: pycon
[
ExampleSearch(
inputs={'question': 'How do I cache a Chat model? What caches can I use?'},
outputs={'answer': 'You can use LangChain\'s caching layer for Chat Models. This can save you money by reducing the number of API calls you make to the LLM provider, if you\'re often requesting the same completion multiple times, and speed up your application.\n\n```python\n\nfrom langchain.cache import InMemoryCache\nlangchain.llm_cache = InMemoryCache()\n\n# The first time, it is not yet in cache, so it should take longer\nllm.predict(\'Tell me a joke\')\n\n```\n\nYou can also use SQLite Cache which uses a SQLite database:\n\n```python\n rm .langchain.db\n\nfrom langchain.cache import SQLiteCache\nlangchain.llm_cache = SQLiteCache(database_path=".langchain.db")\n\n# The first time, it is not yet in cache, so it should take longer\nllm.predict(\'Tell me a joke\') \n```\n'},
metadata=None,
id=UUID('b2ddd1c4-dff6-49ae-8544-f48e39053398'),
dataset_id=UUID('01b6ce0f-bfb6-4f48-bbb8-f19272135d40')
),
ExampleSearch(
inputs={'question': "What's a runnable lambda?"},
outputs={'answer': "A runnable lambda is an object that implements LangChain's `Runnable` interface and runs a callbale (i.e., a function). Note the function must accept a single argument."},
metadata=None,
id=UUID('f94104a7-2434-4ba7-8293-6a283f4860b4'),
dataset_id=UUID('01b6ce0f-bfb6-4f48-bbb8-f19272135d40')
),
ExampleSearch(
inputs={'question': 'Show me how to use RecursiveURLLoader'},
outputs={'answer': 'The RecursiveURLLoader comes from the langchain.document_loaders.recursive_url_loader module. Here\'s an example of how to use it:\n\n```python\nfrom langchain.document_loaders.recursive_url_loader import RecursiveUrlLoader\n\n# Create an instance of RecursiveUrlLoader with the URL you want to load\nloader = RecursiveUrlLoader(url="https://example.com")\n\n# Load all child links from the URL page\nchild_links = loader.load()\n\n# Print the child links\nfor link in child_links:\n print(link)\n```\n\nMake sure to replace "https://example.com" with the actual URL you want to load. The load() method returns a list of child links found on the URL page. You can iterate over this list to access each child link.'},
metadata=None,
id=UUID('0308ea70-a803-4181-a37d-39e95f138f8c'),
dataset_id=UUID('01b6ce0f-bfb6-4f48-bbb8-f19272135d40')
),
]
like_prompt
async
¶
unlike_prompt
async
¶
list_prompts
async
¶
list_prompts(
*,
limit: int = 100,
offset: int = 0,
is_public: Optional[bool] = None,
is_archived: Optional[bool] = False,
sort_field: PromptSortField = updated_at,
sort_direction: Literal["desc", "asc"] = "desc",
query: Optional[str] = None,
) -> ListPromptsResponse
List prompts with pagination.
PARAMETER | DESCRIPTION |
---|---|
limit
|
The maximum number of prompts to return. Defaults to 100.
TYPE:
|
offset
|
The number of prompts to skip. Defaults to 0.
TYPE:
|
is_public
|
Filter prompts by if they are public. |
is_archived
|
Filter prompts by if they are archived. |
sort_field
|
The field to sort by. Defaults to "updated_at".
TYPE:
|
sort_direction
|
The order to sort by. Defaults to "desc".
TYPE:
|
query
|
Filter prompts by a search query. |
RETURNS | DESCRIPTION |
---|---|
ListPromptsResponse
|
A response object containing
TYPE:
|
ListPromptsResponse
|
the list of prompts. |
get_prompt
async
¶
Get a specific prompt by its identifier.
PARAMETER | DESCRIPTION |
---|---|
prompt_identifier
|
The identifier of the prompt. The identifier should be in the format "prompt_name" or "owner/prompt_name".
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Optional[Prompt]
|
Optional[Prompt]: The prompt object. |
RAISES | DESCRIPTION |
---|---|
HTTPError
|
If the prompt is not found or another error occurs. |
create_prompt
async
¶
create_prompt(
prompt_identifier: str,
*,
description: Optional[str] = None,
readme: Optional[str] = None,
tags: Optional[Sequence[str]] = None,
is_public: bool = False,
) -> Prompt
Create a new prompt.
Does not attach prompt object, just creates an empty prompt.
PARAMETER | DESCRIPTION |
---|---|
prompt_identifier
|
The identifier of the prompt. The identifier should be in the formatof owner/name:hash, name:hash, owner/name, or name
TYPE:
|
description
|
A description of the prompt. |
readme
|
A readme for the prompt. |
tags
|
A list of tags for the prompt. |
is_public
|
Whether the prompt should be public. Defaults to False.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Prompt
|
The created prompt object.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the current tenant is not the owner. |
HTTPError
|
If the server request fails. |
create_commit
async
¶
create_commit(
prompt_identifier: str, object: Any, *, parent_commit_hash: Optional[str] = None
) -> str
Create a commit for an existing prompt.
PARAMETER | DESCRIPTION |
---|---|
prompt_identifier
|
The identifier of the prompt.
TYPE:
|
object
|
The LangChain object to commit.
TYPE:
|
parent_commit_hash
|
The hash of the parent commit. Defaults to latest commit. |
RETURNS | DESCRIPTION |
---|---|
str
|
The url of the prompt commit.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
HTTPError
|
If the server request fails. |
ValueError
|
If the prompt does not exist. |
update_prompt
async
¶
update_prompt(
prompt_identifier: str,
*,
description: Optional[str] = None,
readme: Optional[str] = None,
tags: Optional[Sequence[str]] = None,
is_public: Optional[bool] = None,
is_archived: Optional[bool] = None,
) -> dict[str, Any]
Update a prompt's metadata.
To update the content of a prompt, use push_prompt or create_commit instead.
PARAMETER | DESCRIPTION |
---|---|
prompt_identifier
|
The identifier of the prompt to update.
TYPE:
|
description
|
New description for the prompt. |
readme
|
New readme for the prompt. |
tags
|
New list of tags for the prompt. |
is_public
|
New public status for the prompt. |
is_archived
|
New archived status for the prompt. |
RETURNS | DESCRIPTION |
---|---|
dict[str, Any]
|
Dict[str, Any]: The updated prompt data as returned by the server. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the prompt_identifier is empty. |
HTTPError
|
If the server request fails. |
delete_prompt
async
¶
delete_prompt(prompt_identifier: str) -> None
Delete a prompt.
PARAMETER | DESCRIPTION |
---|---|
prompt_identifier
|
The identifier of the prompt to delete.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
bool
|
True if the prompt was successfully deleted, False otherwise.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the current tenant is not the owner of the prompt. |
pull_prompt_commit
async
¶
pull_prompt_commit(
prompt_identifier: str, *, include_model: Optional[bool] = False
) -> PromptCommit
Pull a prompt object from the LangSmith API.
PARAMETER | DESCRIPTION |
---|---|
prompt_identifier
|
The identifier of the prompt.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
PromptCommit
|
The prompt object.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If no commits are found for the prompt. |
list_prompt_commits
async
¶
list_prompt_commits(
prompt_identifier: str,
*,
limit: Optional[int] = None,
offset: int = 0,
include_model: bool = False,
) -> AsyncGenerator[ListedPromptCommit, None]
List commits for a given prompt.
PARAMETER | DESCRIPTION |
---|---|
prompt_identifier
|
The identifier of the prompt in the format 'owner/repo_name'.
TYPE:
|
limit
|
The maximum number of commits to return. If None, returns all commits. Defaults to None. |
offset
|
The number of commits to skip before starting to return results. Defaults to 0.
TYPE:
|
include_model
|
Whether to include the model information in the commit data. Defaults to False.
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncGenerator[ListedPromptCommit, None]
|
A ListedPromptCommit object for each commit. |
Note
This method uses pagination to retrieve commits. It will make multiple API calls if necessary to retrieve all commits or up to the specified limit.
pull_prompt
async
¶
Pull a prompt and return it as a LangChain PromptTemplate.
This method requires langchain-core <https://pypi.org/project/langchain-core/>
__.
PARAMETER | DESCRIPTION |
---|---|
prompt_identifier
|
The identifier of the prompt.
TYPE:
|
include_model
|
Whether to include the model information in the prompt data.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Any
|
The prompt object in the specified format.
TYPE:
|
push_prompt
async
¶
push_prompt(
prompt_identifier: str,
*,
object: Optional[Any] = None,
parent_commit_hash: str = "latest",
is_public: Optional[bool] = None,
description: Optional[str] = None,
readme: Optional[str] = None,
tags: Optional[Sequence[str]] = None,
) -> str
Push a prompt to the LangSmith API.
Can be used to update prompt metadata or prompt content.
If the prompt does not exist, it will be created. If the prompt exists, it will be updated.
PARAMETER | DESCRIPTION |
---|---|
prompt_identifier
|
The identifier of the prompt.
TYPE:
|
object
|
The LangChain object to push. |
parent_commit_hash
|
The parent commit hash. Defaults to "latest".
TYPE:
|
is_public
|
Whether the prompt should be public. If None (default), the current visibility status is maintained for existing prompts. For new prompts, None defaults to private. Set to True to make public, or False to make private. |
description
|
A description of the prompt. Defaults to an empty string. |
readme
|
A readme for the prompt. Defaults to an empty string. |
tags
|
A list of tags for the prompt. Defaults to an empty list. |
RETURNS | DESCRIPTION |
---|---|
str
|
The URL of the prompt.
TYPE:
|