LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • Client
  • AsyncClient
  • Run Helpers
  • Run Trees
  • Evaluation
  • Schemas
  • Utilities
  • Wrappers
  • Anonymizer
  • Testing
  • Expect API
  • Middleware
  • Pytest Plugin
  • Deployment SDK
  • RemoteGraph
⌘I

LangChain Assistant

Ask a question to get started

Enter to send•Shift+Enter new line

Menu

OverviewClientAsyncClientRun HelpersRun TreesEvaluationSchemasUtilitiesWrappersAnonymizerTestingExpect APIMiddlewarePytest PluginDeployment SDKRemoteGraph
Language
Theme
PythonlangsmithclientClientcreate_dataset
Method●Since v0.0

create_dataset

Create a dataset in the LangSmith API.

Copy
create_dataset(
  self,
  dataset_name: str,
  *,
  description: Optional[str] = None,
  data_type: ls_schemas.DataType = ls_schemas.DataType.kv,
  inputs_schema: Optional[dict[str, Any]] = None,
  outputs_schema: Optional[dict[str, Any]] = None,
  transformations: Optional[list[ls_schemas.DatasetTransformation]] = None,
  metadata: Optional[dict] = None
) -> ls_schemas.Dataset

Parameters

NameTypeDescription
dataset_name*str

The name of the dataset.

descriptionOptional[str]
Default:None

The description of the dataset.

data_typeDataType, default=DataType.kv
Default:ls_schemas.DataType.kv

The data type of the dataset.

inputs_schemaOptional[Dict[str, Any]]
Default:None

The schema definition for the inputs of the dataset.

outputs_schemaOptional[Dict[str, Any]]
Default:None

The schema definition for the outputs of the dataset.

transformationsOptional[List[DatasetTransformation]]
Default:None

A list of transformations to apply to the dataset.

metadataOptional[dict]
Default:None

Additional metadata to associate with the dataset.

View source on GitHub