Skip to content

Graphs

langgraph.graph.state.StateGraph

Bases: Generic[StateT, ContextT, InputT, OutputT]

A graph whose nodes communicate by reading and writing to a shared state.

The signature of each node is State -> Partial<State>.

Each state key can optionally be annotated with a reducer function that will be used to aggregate the values of that key received from multiple nodes. The signature of a reducer function is (Value, Value) -> Value.

Warning

StateGraph is a builder class and cannot be used directly for execution. You must first call .compile() to create an executable graph that supports methods like invoke(), stream(), astream(), and ainvoke(). See the CompiledStateGraph documentation for more details.

PARAMETER DESCRIPTION
state_schema

The schema class that defines the state.

TYPE: type[StateT]

context_schema

The schema class that defines the runtime context. Use this to expose immutable context data to your nodes, like user_id, db_conn, etc.

TYPE: type[ContextT] | None DEFAULT: None

input_schema

The schema class that defines the input to the graph.

TYPE: type[InputT] | None DEFAULT: None

output_schema

The schema class that defines the output from the graph.

TYPE: type[OutputT] | None DEFAULT: None

config_schema Deprecated

The config_schema parameter is deprecated in v0.6.0 and support will be removed in v2.0.0. Please use context_schema instead to specify the schema for run-scoped context.

Example
from langchain_core.runnables import RunnableConfig
from typing_extensions import Annotated, TypedDict
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.graph import StateGraph
from langgraph.runtime import Runtime


def reducer(a: list, b: int | None) -> list:
    if b is not None:
        return a + [b]
    return a


class State(TypedDict):
    x: Annotated[list, reducer]


class Context(TypedDict):
    r: float


graph = StateGraph(state_schema=State, context_schema=Context)


def node(state: State, runtime: Runtime[Context]) -> dict:
    r = runtime.context.get("r", 1.0)
    x = state["x"][-1]
    next_value = x * r * (1 - x)
    return {"x": next_value}


graph.add_node("A", node)
graph.set_entry_point("A")
graph.set_finish_point("A")
compiled = graph.compile()

step1 = compiled.invoke({"x": 0.5}, context={"r": 3.0})
# {'x': [0.5, 0.75]}
METHOD DESCRIPTION
add_node

Add a new node to the StateGraph.

add_edge

Add a directed edge from the start node (or list of start nodes) to the end node.

add_conditional_edges

Add a conditional edge from the starting node to any number of destination nodes.

add_sequence

Add a sequence of nodes that will be executed in the provided order.

compile

Compiles the StateGraph into a CompiledStateGraph object.

add_node

add_node(
    node: str | StateNode[NodeInputT, ContextT],
    action: StateNode[NodeInputT, ContextT] | None = None,
    *,
    defer: bool = False,
    metadata: dict[str, Any] | None = None,
    input_schema: type[NodeInputT] | None = None,
    retry_policy: RetryPolicy | Sequence[RetryPolicy] | None = None,
    cache_policy: CachePolicy | None = None,
    destinations: dict[str, str] | tuple[str, ...] | None = None,
    **kwargs: Unpack[DeprecatedKwargs],
) -> Self

Add a new node to the StateGraph.

PARAMETER DESCRIPTION
node

The function or runnable this node will run. If a string is provided, it will be used as the node name, and action will be used as the function or runnable.

TYPE: str | StateNode[NodeInputT, ContextT]

action

The action associated with the node. Will be used as the node function or runnable if node is a string (node name).

TYPE: StateNode[NodeInputT, ContextT] | None DEFAULT: None

defer

Whether to defer the execution of the node until the run is about to end.

TYPE: bool DEFAULT: False

metadata

The metadata associated with the node.

TYPE: dict[str, Any] | None DEFAULT: None

input_schema

The input schema for the node. (default: the graph's state schema)

TYPE: type[NodeInputT] | None DEFAULT: None

retry_policy

The retry policy for the node. If a sequence is provided, the first matching policy will be applied.

TYPE: RetryPolicy | Sequence[RetryPolicy] | None DEFAULT: None

cache_policy

The cache policy for the node.

TYPE: CachePolicy | None DEFAULT: None

destinations

Destinations that indicate where a node can route to. This is useful for edgeless graphs with nodes that return Command objects. If a dict is provided, the keys will be used as the target node names and the values will be used as the labels for the edges. If a tuple is provided, the values will be used as the target node names.

Note

This is only used for graph rendering and doesn't have any effect on the graph execution.

TYPE: dict[str, str] | tuple[str, ...] | None DEFAULT: None

Example
from typing_extensions import TypedDict

from langchain_core.runnables import RunnableConfig
from langgraph.graph import START, StateGraph


class State(TypedDict):
    x: int


def my_node(state: State, config: RunnableConfig) -> State:
    return {"x": state["x"] + 1}


builder = StateGraph(State)
builder.add_node(my_node)  # node name will be 'my_node'
builder.add_edge(START, "my_node")
graph = builder.compile()
graph.invoke({"x": 1})
# {'x': 2}
Customize the name:
builder = StateGraph(State)
builder.add_node("my_fair_node", my_node)
builder.add_edge(START, "my_fair_node")
graph = builder.compile()
graph.invoke({"x": 1})
# {'x': 2}
RETURNS DESCRIPTION
Self

The instance of the StateGraph, allowing for method chaining.

TYPE: Self

add_edge

add_edge(start_key: str | list[str], end_key: str) -> Self

Add a directed edge from the start node (or list of start nodes) to the end node.

When a single start node is provided, the graph will wait for that node to complete before executing the end node. When multiple start nodes are provided, the graph will wait for ALL of the start nodes to complete before executing the end node.

PARAMETER DESCRIPTION
start_key

The key(s) of the start node(s) of the edge.

TYPE: str | list[str]

end_key

The key of the end node of the edge.

TYPE: str

RAISES DESCRIPTION
ValueError

If the start key is 'END' or if the start key or end key is not present in the graph.

RETURNS DESCRIPTION
Self

The instance of the StateGraph, allowing for method chaining.

TYPE: Self

add_conditional_edges

add_conditional_edges(
    source: str,
    path: Callable[..., Hashable | Sequence[Hashable]]
    | Callable[..., Awaitable[Hashable | Sequence[Hashable]]]
    | Runnable[Any, Hashable | Sequence[Hashable]],
    path_map: dict[Hashable, str] | list[str] | None = None,
) -> Self

Add a conditional edge from the starting node to any number of destination nodes.

PARAMETER DESCRIPTION
source

The starting node. This conditional edge will run when exiting this node.

TYPE: str

path

The callable that determines the next node or nodes. If not specifying path_map it should return one or more nodes. If it returns 'END', the graph will stop execution.

TYPE: Callable[..., Hashable | Sequence[Hashable]] | Callable[..., Awaitable[Hashable | Sequence[Hashable]]] | Runnable[Any, Hashable | Sequence[Hashable]]

path_map

Optional mapping of paths to node names. If omitted the paths returned by path should be node names.

TYPE: dict[Hashable, str] | list[str] | None DEFAULT: None

RETURNS DESCRIPTION
Self

The instance of the graph, allowing for method chaining.

TYPE: Self

Warning

Without type hints on the path function's return value (e.g., -> Literal["foo", "__end__"]:) or a path_map, the graph visualization assumes the edge could transition to any node in the graph.

add_sequence

add_sequence(
    nodes: Sequence[
        StateNode[NodeInputT, ContextT] | tuple[str, StateNode[NodeInputT, ContextT]]
    ],
) -> Self

Add a sequence of nodes that will be executed in the provided order.

PARAMETER DESCRIPTION
nodes

A sequence of StateNode (callables that accept a state arg) or (name, StateNode) tuples. If no names are provided, the name will be inferred from the node object (e.g. a Runnable or a Callable name). Each node will be executed in the order provided.

TYPE: Sequence[StateNode[NodeInputT, ContextT] | tuple[str, StateNode[NodeInputT, ContextT]]]

RAISES DESCRIPTION
ValueError

If the sequence is empty.

ValueError

If the sequence contains duplicate node names.

RETURNS DESCRIPTION
Self

The instance of the StateGraph, allowing for method chaining.

TYPE: Self

compile

compile(
    checkpointer: Checkpointer = None,
    *,
    cache: BaseCache | None = None,
    store: BaseStore | None = None,
    interrupt_before: All | list[str] | None = None,
    interrupt_after: All | list[str] | None = None,
    debug: bool = False,
    name: str | None = None,
) -> CompiledStateGraph[StateT, ContextT, InputT, OutputT]

Compiles the StateGraph into a CompiledStateGraph object.

The compiled graph implements the Runnable interface and can be invoked, streamed, batched, and run asynchronously.

PARAMETER DESCRIPTION
checkpointer

A checkpoint saver object or flag. If provided, this Checkpointer serves as a fully versioned "short-term memory" for the graph, allowing it to be paused, resumed, and replayed from any point. If None, it may inherit the parent graph's checkpointer when used as a subgraph. If False, it will not use or inherit any checkpointer.

TYPE: Checkpointer DEFAULT: None

interrupt_before

An optional list of node names to interrupt before.

TYPE: All | list[str] | None DEFAULT: None

interrupt_after

An optional list of node names to interrupt after.

TYPE: All | list[str] | None DEFAULT: None

debug

A flag indicating whether to enable debug mode.

TYPE: bool DEFAULT: False

name

The name to use for the compiled graph.

TYPE: str | None DEFAULT: None

RETURNS DESCRIPTION
CompiledStateGraph

The compiled StateGraph.

TYPE: CompiledStateGraph[StateT, ContextT, InputT, OutputT]

langgraph.graph.state.CompiledStateGraph

Bases: Pregel[StateT, ContextT, InputT, OutputT], Generic[StateT, ContextT, InputT, OutputT]

METHOD DESCRIPTION
stream

Stream graph steps for a single input.

astream

Asynchronously stream graph steps for a single input.

invoke

Run the graph with a single input and config.

ainvoke

Asynchronously run the graph with a single input and config.

get_state

Get the current state of the graph.

aget_state

Get the current state of the graph.

get_state_history

Get the history of the state of the graph.

aget_state_history

Asynchronously get the history of the state of the graph.

update_state

Update the state of the graph with the given values, as if they came from

aupdate_state

Asynchronously update the state of the graph with the given values, as if they came from

bulk_update_state

Apply updates to the graph state in bulk. Requires a checkpointer to be set.

abulk_update_state

Asynchronously apply updates to the graph state in bulk. Requires a checkpointer to be set.

get_graph

Return a drawable representation of the computation graph.

aget_graph

Return a drawable representation of the computation graph.

get_subgraphs

Get the subgraphs of the graph.

aget_subgraphs

Get the subgraphs of the graph.

with_config

Create a copy of the Pregel object with an updated config.

stream

stream(
    input: InputT | Command | None,
    config: RunnableConfig | None = None,
    *,
    context: ContextT | None = None,
    stream_mode: StreamMode | Sequence[StreamMode] | None = None,
    print_mode: StreamMode | Sequence[StreamMode] = (),
    output_keys: str | Sequence[str] | None = None,
    interrupt_before: All | Sequence[str] | None = None,
    interrupt_after: All | Sequence[str] | None = None,
    durability: Durability | None = None,
    subgraphs: bool = False,
    debug: bool | None = None,
    **kwargs: Unpack[DeprecatedKwargs],
) -> Iterator[dict[str, Any] | Any]

Stream graph steps for a single input.

PARAMETER DESCRIPTION
input

The input to the graph.

TYPE: InputT | Command | None

config

The configuration to use for the run.

TYPE: RunnableConfig | None DEFAULT: None

context

The static context to use for the run.

Added in version 0.6.0

TYPE: ContextT | None DEFAULT: None

stream_mode

The mode to stream output, defaults to self.stream_mode. Options are:

  • "values": Emit all values in the state after each step, including interrupts. When used with functional API, values are emitted once at the end of the workflow.
  • "updates": Emit only the node or task names and updates returned by the nodes or tasks after each step. If multiple updates are made in the same step (e.g. multiple nodes are run) then those updates are emitted separately.
  • "custom": Emit custom data from inside nodes or tasks using StreamWriter.
  • "messages": Emit LLM messages token-by-token together with metadata for any LLM invocations inside nodes or tasks. Will be emitted as 2-tuples (LLM token, metadata).
  • "checkpoints": Emit an event when a checkpoint is created, in the same format as returned by get_state().
  • "tasks": Emit events when tasks start and finish, including their results and errors.
  • "debug": Emit debug events with as much information as possible for each step.

You can pass a list as the stream_mode parameter to stream multiple modes at once. The streamed outputs will be tuples of (mode, data).

See LangGraph streaming guide for more details.

TYPE: StreamMode | Sequence[StreamMode] | None DEFAULT: None

print_mode

Accepts the same values as stream_mode, but only prints the output to the console, for debugging purposes. Does not affect the output of the graph in any way.

TYPE: StreamMode | Sequence[StreamMode] DEFAULT: ()

output_keys

The keys to stream, defaults to all non-context channels.

TYPE: str | Sequence[str] | None DEFAULT: None

interrupt_before

Nodes to interrupt before, defaults to all nodes in the graph.

TYPE: All | Sequence[str] | None DEFAULT: None

interrupt_after

Nodes to interrupt after, defaults to all nodes in the graph.

TYPE: All | Sequence[str] | None DEFAULT: None

durability

The durability mode for the graph execution, defaults to "async". Options are:

  • "sync": Changes are persisted synchronously before the next step starts.
  • "async": Changes are persisted asynchronously while the next step executes.
  • "exit": Changes are persisted only when the graph exits.

TYPE: Durability | None DEFAULT: None

subgraphs

Whether to stream events from inside subgraphs, defaults to False. If True, the events will be emitted as tuples (namespace, data), or (namespace, mode, data) if stream_mode is a list, where namespace is a tuple with the path to the node where a subgraph is invoked, e.g. ("parent_node:<task_id>", "child_node:<task_id>").

See LangGraph streaming guide for more details.

TYPE: bool DEFAULT: False

YIELDS DESCRIPTION
dict[str, Any] | Any

The output of each step in the graph. The output shape depends on the stream_mode.

astream async

astream(
    input: InputT | Command | None,
    config: RunnableConfig | None = None,
    *,
    context: ContextT | None = None,
    stream_mode: StreamMode | Sequence[StreamMode] | None = None,
    print_mode: StreamMode | Sequence[StreamMode] = (),
    output_keys: str | Sequence[str] | None = None,
    interrupt_before: All | Sequence[str] | None = None,
    interrupt_after: All | Sequence[str] | None = None,
    durability: Durability | None = None,
    subgraphs: bool = False,
    debug: bool | None = None,
    **kwargs: Unpack[DeprecatedKwargs],
) -> AsyncIterator[dict[str, Any] | Any]

Asynchronously stream graph steps for a single input.

PARAMETER DESCRIPTION
input

The input to the graph.

TYPE: InputT | Command | None

config

The configuration to use for the run.

TYPE: RunnableConfig | None DEFAULT: None

context

The static context to use for the run.

Added in version 0.6.0

TYPE: ContextT | None DEFAULT: None

stream_mode

The mode to stream output, defaults to self.stream_mode. Options are:

  • "values": Emit all values in the state after each step, including interrupts. When used with functional API, values are emitted once at the end of the workflow.
  • "updates": Emit only the node or task names and updates returned by the nodes or tasks after each step. If multiple updates are made in the same step (e.g. multiple nodes are run) then those updates are emitted separately.
  • "custom": Emit custom data from inside nodes or tasks using StreamWriter.
  • "messages": Emit LLM messages token-by-token together with metadata for any LLM invocations inside nodes or tasks. Will be emitted as 2-tuples (LLM token, metadata).
  • "checkpoints": Emit an event when a checkpoint is created, in the same format as returned by get_state().
  • "tasks": Emit events when tasks start and finish, including their results and errors.
  • "debug": Emit debug events with as much information as possible for each step.

You can pass a list as the stream_mode parameter to stream multiple modes at once. The streamed outputs will be tuples of (mode, data).

See LangGraph streaming guide for more details.

TYPE: StreamMode | Sequence[StreamMode] | None DEFAULT: None

print_mode

Accepts the same values as stream_mode, but only prints the output to the console, for debugging purposes. Does not affect the output of the graph in any way.

TYPE: StreamMode | Sequence[StreamMode] DEFAULT: ()

output_keys

The keys to stream, defaults to all non-context channels.

TYPE: str | Sequence[str] | None DEFAULT: None

interrupt_before

Nodes to interrupt before, defaults to all nodes in the graph.

TYPE: All | Sequence[str] | None DEFAULT: None

interrupt_after

Nodes to interrupt after, defaults to all nodes in the graph.

TYPE: All | Sequence[str] | None DEFAULT: None

durability

The durability mode for the graph execution, defaults to "async". Options are:

  • "sync": Changes are persisted synchronously before the next step starts.
  • "async": Changes are persisted asynchronously while the next step executes.
  • "exit": Changes are persisted only when the graph exits.

TYPE: Durability | None DEFAULT: None

subgraphs

Whether to stream events from inside subgraphs, defaults to False. If True, the events will be emitted as tuples (namespace, data), or (namespace, mode, data) if stream_mode is a list, where namespace is a tuple with the path to the node where a subgraph is invoked, e.g. ("parent_node:<task_id>", "child_node:<task_id>").

See LangGraph streaming guide for more details.

TYPE: bool DEFAULT: False

YIELDS DESCRIPTION
AsyncIterator[dict[str, Any] | Any]

The output of each step in the graph. The output shape depends on the stream_mode.

invoke

invoke(
    input: InputT | Command | None,
    config: RunnableConfig | None = None,
    *,
    context: ContextT | None = None,
    stream_mode: StreamMode = "values",
    print_mode: StreamMode | Sequence[StreamMode] = (),
    output_keys: str | Sequence[str] | None = None,
    interrupt_before: All | Sequence[str] | None = None,
    interrupt_after: All | Sequence[str] | None = None,
    durability: Durability | None = None,
    **kwargs: Any,
) -> dict[str, Any] | Any

Run the graph with a single input and config.

PARAMETER DESCRIPTION
input

The input data for the graph. It can be a dictionary or any other type.

TYPE: InputT | Command | None

config

The configuration for the graph run.

TYPE: RunnableConfig | None DEFAULT: None

context

The static context to use for the run.

Added in version 0.6.0

TYPE: ContextT | None DEFAULT: None

stream_mode

The stream mode for the graph run.

TYPE: StreamMode DEFAULT: 'values'

print_mode

Accepts the same values as stream_mode, but only prints the output to the console, for debugging purposes. Does not affect the output of the graph in any way.

TYPE: StreamMode | Sequence[StreamMode] DEFAULT: ()

output_keys

The output keys to retrieve from the graph run.

TYPE: str | Sequence[str] | None DEFAULT: None

interrupt_before

The nodes to interrupt the graph run before.

TYPE: All | Sequence[str] | None DEFAULT: None

interrupt_after

The nodes to interrupt the graph run after.

TYPE: All | Sequence[str] | None DEFAULT: None

durability

The durability mode for the graph execution, defaults to "async". Options are:

  • "sync": Changes are persisted synchronously before the next step starts.
  • "async": Changes are persisted asynchronously while the next step executes.
  • "exit": Changes are persisted only when the graph exits.

TYPE: Durability | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the graph run.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
dict[str, Any] | Any

The output of the graph run. If stream_mode is "values", it returns the latest output.

dict[str, Any] | Any

If stream_mode is not "values", it returns a list of output chunks.

ainvoke async

ainvoke(
    input: InputT | Command | None,
    config: RunnableConfig | None = None,
    *,
    context: ContextT | None = None,
    stream_mode: StreamMode = "values",
    print_mode: StreamMode | Sequence[StreamMode] = (),
    output_keys: str | Sequence[str] | None = None,
    interrupt_before: All | Sequence[str] | None = None,
    interrupt_after: All | Sequence[str] | None = None,
    durability: Durability | None = None,
    **kwargs: Any,
) -> dict[str, Any] | Any

Asynchronously run the graph with a single input and config.

PARAMETER DESCRIPTION
input

The input data for the graph. It can be a dictionary or any other type.

TYPE: InputT | Command | None

config

The configuration for the graph run.

TYPE: RunnableConfig | None DEFAULT: None

context

The static context to use for the run.

Added in version 0.6.0

TYPE: ContextT | None DEFAULT: None

stream_mode

The stream mode for the graph run.

TYPE: StreamMode DEFAULT: 'values'

print_mode

Accepts the same values as stream_mode, but only prints the output to the console, for debugging purposes. Does not affect the output of the graph in any way.

TYPE: StreamMode | Sequence[StreamMode] DEFAULT: ()

output_keys

The output keys to retrieve from the graph run.

TYPE: str | Sequence[str] | None DEFAULT: None

interrupt_before

The nodes to interrupt the graph run before.

TYPE: All | Sequence[str] | None DEFAULT: None

interrupt_after

The nodes to interrupt the graph run after.

TYPE: All | Sequence[str] | None DEFAULT: None

durability

The durability mode for the graph execution, defaults to "async". Options are:

  • "sync": Changes are persisted synchronously before the next step starts.
  • "async": Changes are persisted asynchronously while the next step executes.
  • "exit": Changes are persisted only when the graph exits.

TYPE: Durability | None DEFAULT: None

**kwargs

Additional keyword arguments to pass to the graph run.

TYPE: Any DEFAULT: {}

RETURNS DESCRIPTION
dict[str, Any] | Any

The output of the graph run. If stream_mode is "values", it returns the latest output.

dict[str, Any] | Any

If stream_mode is not "values", it returns a list of output chunks.

get_state

get_state(config: RunnableConfig, *, subgraphs: bool = False) -> StateSnapshot

Get the current state of the graph.

aget_state async

aget_state(config: RunnableConfig, *, subgraphs: bool = False) -> StateSnapshot

Get the current state of the graph.

get_state_history

get_state_history(
    config: RunnableConfig,
    *,
    filter: dict[str, Any] | None = None,
    before: RunnableConfig | None = None,
    limit: int | None = None,
) -> Iterator[StateSnapshot]

Get the history of the state of the graph.

aget_state_history async

aget_state_history(
    config: RunnableConfig,
    *,
    filter: dict[str, Any] | None = None,
    before: RunnableConfig | None = None,
    limit: int | None = None,
) -> AsyncIterator[StateSnapshot]

Asynchronously get the history of the state of the graph.

update_state

update_state(
    config: RunnableConfig,
    values: dict[str, Any] | Any | None,
    as_node: str | None = None,
    task_id: str | None = None,
) -> RunnableConfig

Update the state of the graph with the given values, as if they came from node as_node. If as_node is not provided, it will be set to the last node that updated the state, if not ambiguous.

aupdate_state async

aupdate_state(
    config: RunnableConfig,
    values: dict[str, Any] | Any,
    as_node: str | None = None,
    task_id: str | None = None,
) -> RunnableConfig

Asynchronously update the state of the graph with the given values, as if they came from node as_node. If as_node is not provided, it will be set to the last node that updated the state, if not ambiguous.

bulk_update_state

bulk_update_state(
    config: RunnableConfig, supersteps: Sequence[Sequence[StateUpdate]]
) -> RunnableConfig

Apply updates to the graph state in bulk. Requires a checkpointer to be set.

PARAMETER DESCRIPTION
config

The config to apply the updates to.

TYPE: RunnableConfig

supersteps

A list of supersteps, each including a list of updates to apply sequentially to a graph state. Each update is a tuple of the form (values, as_node, task_id) where task_id is optional.

TYPE: Sequence[Sequence[StateUpdate]]

RAISES DESCRIPTION
ValueError

If no checkpointer is set or no updates are provided.

InvalidUpdateError

If an invalid update is provided.

RETURNS DESCRIPTION
RunnableConfig

The updated config.

TYPE: RunnableConfig

abulk_update_state async

abulk_update_state(
    config: RunnableConfig, supersteps: Sequence[Sequence[StateUpdate]]
) -> RunnableConfig

Asynchronously apply updates to the graph state in bulk. Requires a checkpointer to be set.

PARAMETER DESCRIPTION
config

The config to apply the updates to.

TYPE: RunnableConfig

supersteps

A list of supersteps, each including a list of updates to apply sequentially to a graph state. Each update is a tuple of the form (values, as_node, task_id) where task_id is optional.

TYPE: Sequence[Sequence[StateUpdate]]

RAISES DESCRIPTION
ValueError

If no checkpointer is set or no updates are provided.

InvalidUpdateError

If an invalid update is provided.

RETURNS DESCRIPTION
RunnableConfig

The updated config.

TYPE: RunnableConfig

get_graph

get_graph(config: RunnableConfig | None = None, *, xray: int | bool = False) -> Graph

Return a drawable representation of the computation graph.

aget_graph async

aget_graph(config: RunnableConfig | None = None, *, xray: int | bool = False) -> Graph

Return a drawable representation of the computation graph.

get_subgraphs

get_subgraphs(
    *, namespace: str | None = None, recurse: bool = False
) -> Iterator[tuple[str, PregelProtocol]]

Get the subgraphs of the graph.

PARAMETER DESCRIPTION
namespace

The namespace to filter the subgraphs by.

TYPE: str | None DEFAULT: None

recurse

Whether to recurse into the subgraphs. If False, only the immediate subgraphs will be returned.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
Iterator[tuple[str, PregelProtocol]]

An iterator of the (namespace, subgraph) pairs.

aget_subgraphs async

aget_subgraphs(
    *, namespace: str | None = None, recurse: bool = False
) -> AsyncIterator[tuple[str, PregelProtocol]]

Get the subgraphs of the graph.

PARAMETER DESCRIPTION
namespace

The namespace to filter the subgraphs by.

TYPE: str | None DEFAULT: None

recurse

Whether to recurse into the subgraphs. If False, only the immediate subgraphs will be returned.

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
AsyncIterator[tuple[str, PregelProtocol]]

An iterator of the (namespace, subgraph) pairs.

with_config

with_config(config: RunnableConfig | None = None, **kwargs: Any) -> Self

Create a copy of the Pregel object with an updated config.

langgraph.graph.message

FUNCTION DESCRIPTION
add_messages

Merges two lists of messages, updating existing messages by ID.

add_messages

add_messages(
    left: Messages,
    right: Messages,
    *,
    format: Literal["langchain-openai"] | None = None,
) -> Messages

Merges two lists of messages, updating existing messages by ID.

By default, this ensures the state is "append-only", unless the new message has the same ID as an existing message.

PARAMETER DESCRIPTION
left

The base list of Messages.

TYPE: Messages

right

The list of Messages (or single Message) to merge into the base list.

TYPE: Messages

format

The format to return messages in. If None then Messages will be returned as is. If langchain-openai then Messages will be returned as BaseMessage objects with their contents formatted to match OpenAI message format, meaning contents can be string, 'text' blocks, or 'image_url' blocks and tool responses are returned as their own ToolMessage objects.

Requirement

Must have langchain-core>=0.3.11 installed to use this feature.

TYPE: Literal['langchain-openai'] | None DEFAULT: None

RETURNS DESCRIPTION
Messages

A new list of messages with the messages from right merged into left.

Messages

If a message in right has the same ID as a message in left, the message from right will replace the message from left.

Example
Basic usage
from langchain_core.messages import AIMessage, HumanMessage

msgs1 = [HumanMessage(content="Hello", id="1")]
msgs2 = [AIMessage(content="Hi there!", id="2")]
add_messages(msgs1, msgs2)
# [HumanMessage(content='Hello', id='1'), AIMessage(content='Hi there!', id='2')]
Overwrite existing message
msgs1 = [HumanMessage(content="Hello", id="1")]
msgs2 = [HumanMessage(content="Hello again", id="1")]
add_messages(msgs1, msgs2)
# [HumanMessage(content='Hello again', id='1')]
Use in a StateGraph
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph


class State(TypedDict):
    messages: Annotated[list, add_messages]


builder = StateGraph(State)
builder.add_node("chatbot", lambda state: {"messages": [("assistant", "Hello")]})
builder.set_entry_point("chatbot")
builder.set_finish_point("chatbot")
graph = builder.compile()
graph.invoke({})
# {'messages': [AIMessage(content='Hello', id=...)]}
Use OpenAI message format
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, add_messages


class State(TypedDict):
    messages: Annotated[list, add_messages(format="langchain-openai")]


def chatbot_node(state: State) -> list:
    return {
        "messages": [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "Here's an image:",
                        "cache_control": {"type": "ephemeral"},
                    },
                    {
                        "type": "image",
                        "source": {
                            "type": "base64",
                            "media_type": "image/jpeg",
                            "data": "1234",
                        },
                    },
                ],
            },
        ]
    }


builder = StateGraph(State)
builder.add_node("chatbot", chatbot_node)
builder.set_entry_point("chatbot")
builder.set_finish_point("chatbot")
graph = builder.compile()
graph.invoke({"messages": []})
# {
#     'messages': [
#         HumanMessage(
#             content=[
#                 {"type": "text", "text": "Here's an image:"},
#                 {
#                     "type": "image_url",
#                     "image_url": {"url": ""},
#                 },
#             ],
#         ),
#     ]
# }