Vector Stores¶
langchain_core.vectorstores.base.VectorStore
¶
Bases: ABC
Interface for vector store.
METHOD | DESCRIPTION |
---|---|
add_texts |
Run more texts through the embeddings and add to the |
delete |
Delete by vector ID or other criteria. |
get_by_ids |
Get documents by their IDs. |
aget_by_ids |
Async get documents by their IDs. |
adelete |
Async delete by vector ID or other criteria. |
aadd_texts |
Async run more texts through the embeddings and add to the |
add_documents |
Add or update documents in the vectorstore. |
aadd_documents |
Async run more documents through the embeddings and add to the |
search |
Return docs most similar to query using a specified search type. |
asearch |
Async return docs most similar to query using a specified search type. |
similarity_search |
Return docs most similar to query. |
similarity_search_with_score |
Run similarity search with distance. |
asimilarity_search_with_score |
Async run similarity search with distance. |
similarity_search_with_relevance_scores |
Return docs and relevance scores in the range |
asimilarity_search_with_relevance_scores |
Async return docs and relevance scores in the range |
asimilarity_search |
Async return docs most similar to query. |
similarity_search_by_vector |
Return docs most similar to embedding vector. |
asimilarity_search_by_vector |
Async return docs most similar to embedding vector. |
max_marginal_relevance_search |
Return docs selected using the maximal marginal relevance. |
amax_marginal_relevance_search |
Async return docs selected using the maximal marginal relevance. |
max_marginal_relevance_search_by_vector |
Return docs selected using the maximal marginal relevance. |
amax_marginal_relevance_search_by_vector |
Async return docs selected using the maximal marginal relevance. |
from_documents |
Return |
afrom_documents |
Async return |
from_texts |
Return VectorStore initialized from texts and embeddings. |
afrom_texts |
Async return VectorStore initialized from texts and embeddings. |
as_retriever |
Return |
add_texts
¶
add_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any
) -> list[str]
Run more texts through the embeddings and add to the VectorStore
.
PARAMETER | DESCRIPTION |
---|---|
texts
|
Iterable of strings to add to the |
metadatas
|
Optional list of metadatas associated with the texts. |
ids
|
Optional list of IDs associated with the texts. |
**kwargs
|
vectorstore specific parameters.
One of the kwargs should be
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[str]
|
List of ids from adding the texts into the |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the number of metadatas does not match the number of texts. |
ValueError
|
If the number of ids does not match the number of texts. |
delete
¶
get_by_ids
¶
Get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
PARAMETER | DESCRIPTION |
---|---|
ids
|
List of ids to retrieve. |
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of Documents. |
Added in version 0.2.11
aget_by_ids
async
¶
Async get documents by their IDs.
The returned documents are expected to have the ID field set to the ID of the document in the vector store.
Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.
Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.
This method should NOT raise exceptions if no documents are found for some IDs.
PARAMETER | DESCRIPTION |
---|---|
ids
|
List of ids to retrieve. |
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of Documents. |
Added in version 0.2.11
adelete
async
¶
Async delete by vector ID or other criteria.
PARAMETER | DESCRIPTION |
---|---|
ids
|
List of ids to delete. If |
**kwargs
|
Other keyword arguments that subclasses might use.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
bool | None
|
True if deletion is successful, False otherwise, None if not implemented. |
aadd_texts
async
¶
aadd_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any
) -> list[str]
Async run more texts through the embeddings and add to the VectorStore
.
PARAMETER | DESCRIPTION |
---|---|
texts
|
Iterable of strings to add to the |
metadatas
|
Optional list of metadatas associated with the texts. |
ids
|
Optional list |
**kwargs
|
vectorstore specific parameters.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[str]
|
List of ids from adding the texts into the |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the number of metadatas does not match the number of texts. |
ValueError
|
If the number of ids does not match the number of texts. |
add_documents
¶
Add or update documents in the vectorstore.
PARAMETER | DESCRIPTION |
---|---|
documents
|
Documents to add to the |
**kwargs
|
Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[str]
|
List of IDs of the added texts. |
aadd_documents
async
¶
search
¶
Return docs most similar to query using a specified search type.
PARAMETER | DESCRIPTION |
---|---|
query
|
Input text
TYPE:
|
search_type
|
Type of search to perform. Can be "similarity", "mmr", or "similarity_score_threshold".
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If search_type is not one of "similarity", "mmr", or "similarity_score_threshold". |
asearch
async
¶
Async return docs most similar to query using a specified search type.
PARAMETER | DESCRIPTION |
---|---|
query
|
Input text.
TYPE:
|
search_type
|
Type of search to perform. Can be "similarity", "mmr", or "similarity_score_threshold".
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If search_type is not one of "similarity", "mmr", or "similarity_score_threshold". |
similarity_search
abstractmethod
¶
similarity_search_with_score
¶
asimilarity_search_with_score
async
¶
similarity_search_with_relevance_scores
¶
similarity_search_with_relevance_scores(
query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]
Return docs and relevance scores in the range [0, 1]
.
0
is dissimilar, 1
is most similar.
PARAMETER | DESCRIPTION |
---|---|
query
|
Input text.
TYPE:
|
k
|
Number of Documents to return.
TYPE:
|
**kwargs
|
kwargs to be passed to similarity search. Should include
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[tuple[Document, float]]
|
List of Tuples of |
asimilarity_search_with_relevance_scores
async
¶
asimilarity_search_with_relevance_scores(
query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]
Async return docs and relevance scores in the range [0, 1]
.
0
is dissimilar, 1
is most similar.
PARAMETER | DESCRIPTION |
---|---|
query
|
Input text.
TYPE:
|
k
|
Number of Documents to return.
TYPE:
|
**kwargs
|
kwargs to be passed to similarity search. Should include
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[tuple[Document, float]]
|
List of Tuples of |
asimilarity_search
async
¶
Async return docs most similar to query.
PARAMETER | DESCRIPTION |
---|---|
query
|
Input text.
TYPE:
|
k
|
Number of Documents to return.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
similarity_search_by_vector
¶
Return docs most similar to embedding vector.
PARAMETER | DESCRIPTION |
---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of Documents to return.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
asimilarity_search_by_vector
async
¶
Async return docs most similar to embedding vector.
PARAMETER | DESCRIPTION |
---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of Documents to return.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
max_marginal_relevance_search
¶
max_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
PARAMETER | DESCRIPTION |
---|---|
query
|
Text to look up documents similar to.
TYPE:
|
k
|
Number of Documents to return.
TYPE:
|
fetch_k
|
Number of Documents to fetch to pass to MMR algorithm.
TYPE:
|
lambda_mult
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
amax_marginal_relevance_search
async
¶
amax_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
Async return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
PARAMETER | DESCRIPTION |
---|---|
query
|
Text to look up documents similar to.
TYPE:
|
k
|
Number of Documents to return.
TYPE:
|
fetch_k
|
Number of Documents to fetch to pass to MMR algorithm.
TYPE:
|
lambda_mult
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
max_marginal_relevance_search_by_vector
¶
max_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any
) -> list[Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
PARAMETER | DESCRIPTION |
---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of Documents to return.
TYPE:
|
fetch_k
|
Number of Documents to fetch to pass to MMR algorithm.
TYPE:
|
lambda_mult
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
amax_marginal_relevance_search_by_vector
async
¶
amax_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any
) -> list[Document]
Async return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
PARAMETER | DESCRIPTION |
---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of Documents to return.
TYPE:
|
fetch_k
|
Number of Documents to fetch to pass to MMR algorithm.
TYPE:
|
lambda_mult
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
from_documents
classmethod
¶
from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) -> Self
Return VectorStore
initialized from documents and embeddings.
PARAMETER | DESCRIPTION |
---|---|
documents
|
List of |
embedding
|
Embedding function to use.
TYPE:
|
**kwargs
|
Additional keyword arguments.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Self
|
|
afrom_documents
async
classmethod
¶
afrom_documents(
documents: list[Document], embedding: Embeddings, **kwargs: Any
) -> Self
Async return VectorStore
initialized from documents and embeddings.
PARAMETER | DESCRIPTION |
---|---|
documents
|
List of |
embedding
|
Embedding function to use.
TYPE:
|
**kwargs
|
Additional keyword arguments.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Self
|
|
from_texts
abstractmethod
classmethod
¶
from_texts(
texts: list[str],
embedding: Embeddings,
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any
) -> VST
Return VectorStore initialized from texts and embeddings.
PARAMETER | DESCRIPTION |
---|---|
texts
|
Texts to add to the |
embedding
|
Embedding function to use.
TYPE:
|
metadatas
|
Optional list of metadatas associated with the texts. |
ids
|
Optional list of IDs associated with the texts. |
**kwargs
|
Additional keyword arguments.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
VST
|
VectorStore initialized from texts and embeddings. |
afrom_texts
async
classmethod
¶
afrom_texts(
texts: list[str],
embedding: Embeddings,
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any
) -> Self
Async return VectorStore initialized from texts and embeddings.
PARAMETER | DESCRIPTION |
---|---|
texts
|
Texts to add to the |
embedding
|
Embedding function to use.
TYPE:
|
metadatas
|
Optional list of metadatas associated with the texts. |
ids
|
Optional list of IDs associated with the texts. |
**kwargs
|
Additional keyword arguments.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Self
|
VectorStore initialized from texts and embeddings. |
as_retriever
¶
as_retriever(**kwargs: Any) -> VectorStoreRetriever
Return VectorStoreRetriever
initialized from this VectorStore
.
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
Keyword arguments to pass to the search function. Can include: search_type: Defines the type of search that the Retriever should perform. Can be "similarity" (default), "mmr", or "similarity_score_threshold". search_kwargs: Keyword arguments to pass to the search function. Can include things like: k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5) filter: Filter by document metadata
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
VectorStoreRetriever
|
Retriever class for |
Examples:
# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
search_type="mmr", search_kwargs={"k": 6, "lambda_mult": 0.25}
)
# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 50})
# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": 0.8},
)
# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={"k": 1})
# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
search_kwargs={"filter": {"paper_title": "GPT-4 Technical Report"}}
)
langchain_core.vectorstores.base.VectorStoreRetriever
¶
Bases: BaseRetriever
Base Retriever class for VectorStore.
METHOD | DESCRIPTION |
---|---|
validate_search_type |
Validate search type. |
add_documents |
Add documents to the |
aadd_documents |
Async add documents to the |
get_name |
Get the name of the |
get_input_schema |
Get a Pydantic model that can be used to validate input to the |
get_input_jsonschema |
Get a JSON schema that represents the input to the |
get_output_schema |
Get a Pydantic model that can be used to validate output to the |
get_output_jsonschema |
Get a JSON schema that represents the output of the |
config_schema |
The type of config this |
get_config_jsonschema |
Get a JSON schema that represents the config of the |
get_graph |
Return a graph representation of this |
get_prompts |
Return a list of prompts used by this |
__or__ |
Runnable "or" operator. |
__ror__ |
Runnable "reverse-or" operator. |
pipe |
Pipe |
pick |
Pick keys from the output |
assign |
Assigns new fields to the |
invoke |
Invoke the retriever to get relevant documents. |
ainvoke |
Asynchronously invoke the retriever to get relevant documents. |
batch |
Default implementation runs invoke in parallel using a thread pool executor. |
batch_as_completed |
Run |
abatch |
Default implementation runs |
abatch_as_completed |
Run |
stream |
Default implementation of |
astream |
Default implementation of |
astream_log |
Stream all output from a |
astream_events |
Generate a stream of events. |
transform |
Transform inputs to outputs. |
atransform |
Transform inputs to outputs. |
bind |
Bind arguments to a |
with_config |
Bind config to a |
with_listeners |
Bind lifecycle listeners to a |
with_alisteners |
Bind async lifecycle listeners to a |
with_types |
Bind input and output types to a |
with_retry |
Create a new |
map |
Return a new |
with_fallbacks |
Add fallbacks to a |
as_tool |
Create a |
__init__ |
|
is_lc_serializable |
Is this class serializable? |
get_lc_namespace |
Get the namespace of the LangChain object. |
lc_id |
Return a unique identifier for this class for serialization purposes. |
to_json |
Serialize the |
to_json_not_implemented |
Serialize a "not implemented" object. |
configurable_fields |
Configure particular |
configurable_alternatives |
Configure alternatives for |
search_type
class-attribute
instance-attribute
¶
search_type: str = 'similarity'
Type of search to perform. Defaults to "similarity".
search_kwargs
class-attribute
instance-attribute
¶
Keyword arguments to pass to the search function.
name
class-attribute
instance-attribute
¶
name: str | None = None
The name of the Runnable
. Used for debugging and tracing.
InputType
property
¶
InputType: type[Input]
Input type.
The type of input this Runnable
accepts specified as a type annotation.
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the input type cannot be inferred. |
OutputType
property
¶
OutputType: type[Output]
Output Type.
The type of output this Runnable
produces specified as a type annotation.
RAISES | DESCRIPTION |
---|---|
TypeError
|
If the output type cannot be inferred. |
input_schema
property
¶
The type of input this Runnable
accepts specified as a Pydantic model.
output_schema
property
¶
Output schema.
The type of output this Runnable
produces specified as a Pydantic model.
config_specs
property
¶
config_specs: list[ConfigurableFieldSpec]
List configurable fields for this Runnable
.
lc_secrets
property
¶
A map of constructor argument names to secret ids.
For example, {"openai_api_key": "OPENAI_API_KEY"}
lc_attributes
property
¶
lc_attributes: dict
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
Default is an empty dictionary.
tags
class-attribute
instance-attribute
¶
Optional list of tags associated with the retriever.
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks
.
You can use these to eg identify a specific instance of a retriever with its
use case.
metadata
class-attribute
instance-attribute
¶
Optional metadata associated with the retriever.
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks
.
You can use these to eg identify a specific instance of a retriever with its
use case.
validate_search_type
classmethod
¶
Validate search type.
PARAMETER | DESCRIPTION |
---|---|
values
|
Values to validate.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Any
|
Validated values. |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If search_type is not one of the allowed search types. |
ValueError
|
If score_threshold is not specified with a float value(0~1) |
add_documents
¶
aadd_documents
async
¶
get_name
¶
get_input_schema
¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
Get a Pydantic model that can be used to validate input to the Runnable
.
Runnable
objects that leverage the configurable_fields
and
configurable_alternatives
methods will have a dynamic input schema that
depends on which configuration the Runnable
is invoked with.
This method allows to get an input schema for a specific configuration.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
type[BaseModel]
|
A Pydantic model that can be used to validate input. |
get_input_jsonschema
¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
Get a JSON schema that represents the input to the Runnable
.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict[str, Any]
|
A JSON schema that represents the input to the |
Example
Added in version 0.3.0
get_output_schema
¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
Get a Pydantic model that can be used to validate output to the Runnable
.
Runnable
objects that leverage the configurable_fields
and
configurable_alternatives
methods will have a dynamic output schema that
depends on which configuration the Runnable
is invoked with.
This method allows to get an output schema for a specific configuration.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
type[BaseModel]
|
A Pydantic model that can be used to validate output. |
get_output_jsonschema
¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
Get a JSON schema that represents the output of the Runnable
.
PARAMETER | DESCRIPTION |
---|---|
config
|
A config to use when generating the schema.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict[str, Any]
|
A JSON schema that represents the output of the |
Example
Added in version 0.3.0
config_schema
¶
The type of config this Runnable
accepts specified as a Pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives
methods.
PARAMETER | DESCRIPTION |
---|---|
include
|
A list of fields to include in the config schema. |
RETURNS | DESCRIPTION |
---|---|
type[BaseModel]
|
A Pydantic model that can be used to validate config. |
get_config_jsonschema
¶
get_graph
¶
get_graph(config: RunnableConfig | None = None) -> Graph
Return a graph representation of this Runnable
.
get_prompts
¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
Return a list of prompts used by this Runnable
.
__or__
¶
__or__(
other: (
Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any]
),
) -> RunnableSerializable[Input, Other]
Runnable "or" operator.
Compose this Runnable
with another object to create a
RunnableSequence
.
PARAMETER | DESCRIPTION |
---|---|
other
|
Another
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Other]
|
A new |
__ror__
¶
__ror__(
other: (
Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any]
),
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" operator.
Compose this Runnable
with another object to create a
RunnableSequence
.
PARAMETER | DESCRIPTION |
---|---|
other
|
Another
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Other, Output]
|
A new |
pipe
¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
Pipe Runnable
objects.
Compose this Runnable
with Runnable
-like objects to make a
RunnableSequence
.
Equivalent to RunnableSequence(self, *others)
or self | others[0] | ...
Example
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
PARAMETER | DESCRIPTION |
---|---|
*others
|
Other
TYPE:
|
name
|
An optional name for the resulting
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Other]
|
A new |
pick
¶
Pick keys from the output dict
of this Runnable
.
Pick a single key:
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick a list of keys:
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
PARAMETER | DESCRIPTION |
---|---|
keys
|
A key or list of keys to pick from the output dict. |
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Any, Any]
|
a new |
assign
¶
assign(
**kwargs: (
Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]]
),
) -> RunnableSerializable[Any, Any]
Assigns new fields to the dict
output of this Runnable
.
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
A mapping of keys to
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Any, Any]
|
A new |
invoke
¶
invoke(
input: str, config: RunnableConfig | None = None, **kwargs: Any
) -> list[Document]
Invoke the retriever to get relevant documents.
Main entry point for synchronous retriever invocations.
PARAMETER | DESCRIPTION |
---|---|
input
|
The query string.
TYPE:
|
config
|
Configuration for the retriever.
TYPE:
|
**kwargs
|
Additional arguments to pass to the retriever.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of relevant documents. |
Examples:
ainvoke
async
¶
ainvoke(
input: str, config: RunnableConfig | None = None, **kwargs: Any
) -> list[Document]
Asynchronously invoke the retriever to get relevant documents.
Main entry point for asynchronous retriever invocations.
PARAMETER | DESCRIPTION |
---|---|
input
|
The query string.
TYPE:
|
config
|
Configuration for the retriever.
TYPE:
|
**kwargs
|
Additional arguments to pass to the retriever.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of relevant documents. |
Examples:
batch
¶
batch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None
) -> list[Output]
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently;
e.g., if the underlying Runnable
uses an API which supports a batch mode.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Output]
|
A list of outputs from the |
batch_as_completed
¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None
) -> Iterator[tuple[int, Output | Exception]]
Run invoke
in parallel on a list of inputs.
Yields results as they complete.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
tuple[int, Output | Exception]
|
Tuples of the index of the input and the output from the |
abatch
async
¶
abatch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None
) -> list[Output]
Default implementation runs ainvoke
in parallel using asyncio.gather
.
The default implementation of batch
works well for IO bound runnables.
Subclasses must override this method if they can batch more efficiently;
e.g., if the underlying Runnable
uses an API which supports a batch mode.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Output]
|
A list of outputs from the |
abatch_as_completed
async
¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None
) -> AsyncIterator[tuple[int, Output | Exception]]
Run ainvoke
in parallel on a list of inputs.
Yields results as they complete.
PARAMETER | DESCRIPTION |
---|---|
inputs
|
A list of inputs to the
TYPE:
|
config
|
A config to use when invoking the
TYPE:
|
return_exceptions
|
Whether to return exceptions instead of raising them.
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
A tuple of the index of the input and the output from the |
stream
¶
stream(
input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
Default implementation of stream
, which calls invoke
.
Subclasses must override this method if they support streaming output.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
Output
|
The output of the |
astream
async
¶
astream(
input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> AsyncIterator[Output]
Default implementation of astream
, which calls ainvoke
.
Subclasses must override this method if they support streaming output.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[Output]
|
The output of the |
astream_log
async
¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
Stream all output from a Runnable
, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The Jsonpatch ops can be applied in order to construct state.
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
diff
|
Whether to yield diffs between each step or the current state.
TYPE:
|
with_streamed_output_list
|
Whether to yield the
TYPE:
|
include_names
|
Only include logs with these names. |
include_types
|
Only include logs with these types. |
include_tags
|
Only include logs with these tags. |
exclude_names
|
Exclude logs with these names. |
exclude_types
|
Exclude logs with these types. |
exclude_tags
|
Exclude logs with these tags. |
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
A |
astream_events
async
¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any
) -> AsyncIterator[StreamEvent]
Generate a stream of events.
Use to create an iterator over StreamEvent
that provide real-time information
about the progress of the Runnable
, including StreamEvent
from intermediate
results.
A StreamEvent
is a dictionary with the following schema:
event
: Event names are of the format:on_[runnable_type]_(start|stream|end)
.name
: The name of theRunnable
that generated the event.run_id
: Randomly generated ID associated with the given execution of theRunnable
that emitted the event. A childRunnable
that gets invoked as part of the execution of a parentRunnable
is assigned its own unique ID.parent_ids
: The IDs of the parent runnables that generated the event. The rootRunnable
will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags
: The tags of theRunnable
that generated the event.metadata
: The metadata of theRunnable
that generated the event.data
: The data associated with the event. The contents of this field depend on the type of event. See the table below for more details.
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
Note
This reference table is for the v2 version of the schema.
event | name | chunk | input | output |
---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'Hello' |
||
on_llm_end |
'[model name]' |
'Hello human!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
Attribute | Type | Description |
---|---|---|
name |
str |
A user defined name for the event. |
data |
Any |
The data associated with the event. This can be anything, though we suggest making it JSON serializable. |
Here are declarations associated with the standard events shown above:
format_docs
:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool
:
prompt
:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
For instance:
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
PARAMETER | DESCRIPTION |
---|---|
input
|
The input to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
version
|
The version of the schema to use either
TYPE:
|
include_names
|
Only include events from |
include_types
|
Only include events from |
include_tags
|
Only include events from |
exclude_names
|
Exclude events from |
exclude_types
|
Exclude events from |
exclude_tags
|
Exclude events from |
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[StreamEvent]
|
An async stream of |
RAISES | DESCRIPTION |
---|---|
NotImplementedError
|
If the version is not |
transform
¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
Transform inputs to outputs.
Default implementation of transform, which buffers input and calls astream
.
Subclasses must override this method if they can start producing output while input is still being generated.
PARAMETER | DESCRIPTION |
---|---|
input
|
An iterator of inputs to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
Output
|
The output of the |
atransform
async
¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None
) -> AsyncIterator[Output]
Transform inputs to outputs.
Default implementation of atransform, which buffers input and calls astream
.
Subclasses must override this method if they can start producing output while input is still being generated.
PARAMETER | DESCRIPTION |
---|---|
input
|
An async iterator of inputs to the
TYPE:
|
config
|
The config to use for the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
YIELDS | DESCRIPTION |
---|---|
AsyncIterator[Output]
|
The output of the |
bind
¶
Bind arguments to a Runnable
, returning a new Runnable
.
Useful when a Runnable
in a chain requires an argument that is not
in the output of the previous Runnable
or included in the user input.
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
The arguments to bind to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config
¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
Bind config to a Runnable
, returning a new Runnable
.
PARAMETER | DESCRIPTION |
---|---|
config
|
The config to bind to the
TYPE:
|
**kwargs
|
Additional keyword arguments to pass to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
with_listeners
¶
with_listeners(
*,
on_start: (
Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None
) = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: (
Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None
) = None
) -> Runnable[Input, Output]
Bind lifecycle listeners to a Runnable
, returning a new Runnable
.
The Run object contains information about the run, including its id
,
type
, input
, output
, error
, start_time
, end_time
, and
any tags or metadata added to the run.
PARAMETER | DESCRIPTION |
---|---|
on_start
|
Called before the
TYPE:
|
on_end
|
Called after the
TYPE:
|
on_error
|
Called if the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners
¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None
) -> Runnable[Input, Output]
Bind async lifecycle listeners to a Runnable
.
Returns a new Runnable
.
The Run object contains information about the run, including its id
,
type
, input
, output
, error
, start_time
, end_time
, and
any tags or metadata added to the run.
PARAMETER | DESCRIPTION |
---|---|
on_start
|
Called asynchronously before the
TYPE:
|
on_end
|
Called asynchronously after the
TYPE:
|
on_error
|
Called asynchronously if the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
Example
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types
¶
with_types(
*, input_type: type[Input] | None = None, output_type: type[Output] | None = None
) -> Runnable[Input, Output]
Bind input and output types to a Runnable
, returning a new Runnable
.
PARAMETER | DESCRIPTION |
---|---|
input_type
|
The input type to bind to the
TYPE:
|
output_type
|
The output type to bind to the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new |
with_retry
¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3
) -> Runnable[Input, Output]
Create a new Runnable
that retries the original Runnable
on exceptions.
PARAMETER | DESCRIPTION |
---|---|
retry_if_exception_type
|
A tuple of exception types to retry on.
TYPE:
|
wait_exponential_jitter
|
Whether to add jitter to the wait time between retries.
TYPE:
|
stop_after_attempt
|
The maximum number of attempts to make before giving up.
TYPE:
|
exponential_jitter_params
|
Parameters for
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Runnable[Input, Output]
|
A new Runnable that retries the original Runnable on exceptions. |
Example
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map
¶
with_fallbacks
¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None
) -> RunnableWithFallbacks[Input, Output]
Add fallbacks to a Runnable
, returning a new Runnable
.
The new Runnable
will try the original Runnable
, and then each fallback
in order, upon failures.
PARAMETER | DESCRIPTION |
---|---|
fallbacks
|
A sequence of runnables to try if the original |
exceptions_to_handle
|
A tuple of exception types to handle.
TYPE:
|
exception_key
|
If
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
Example
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
PARAMETER | DESCRIPTION |
---|---|
fallbacks
|
A sequence of runnables to try if the original |
exceptions_to_handle
|
A tuple of exception types to handle.
TYPE:
|
exception_key
|
If
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
as_tool
¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None
) -> BaseTool
Create a BaseTool
from a Runnable
.
as_tool
will instantiate a BaseTool
with a name, description, and
args_schema
from a Runnable
. Where possible, schemas are inferred
from runnable.get_input_schema
. Alternatively (e.g., if the
Runnable
takes a dict as input and the specific dict keys are not typed),
the schema can be specified directly with args_schema
. You can also
pass arg_types
to just specify the required arguments and their types.
PARAMETER | DESCRIPTION |
---|---|
args_schema
|
The schema for the tool. |
name
|
The name of the tool.
TYPE:
|
description
|
The description of the tool.
TYPE:
|
arg_types
|
A dictionary of argument names to types. |
RETURNS | DESCRIPTION |
---|---|
BaseTool
|
A |
Typed dict input:
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema via args_schema
:
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema via arg_types
:
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
String input:
from langchain_core.runnables import RunnableLambda
def f(x: str) -> str:
return x + "a"
def g(x: str) -> str:
return x + "z"
runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")
Added in version 0.2.14
is_lc_serializable
classmethod
¶
is_lc_serializable() -> bool
Is this class serializable?
By design, even if a class inherits from Serializable
, it is not serializable
by default. This is to prevent accidental serialization of objects that should
not be serialized.
RETURNS | DESCRIPTION |
---|---|
bool
|
Whether the class is serializable. Default is |
get_lc_namespace
classmethod
¶
lc_id
classmethod
¶
Return a unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path to the object.
For example, for the class langchain.llms.openai.OpenAI
, the id is
["langchain", "llms", "openai", "OpenAI"]
.
to_json
¶
Serialize the Runnable
to JSON.
RETURNS | DESCRIPTION |
---|---|
SerializedConstructor | SerializedNotImplemented
|
A JSON-serializable representation of the |
to_json_not_implemented
¶
Serialize a "not implemented" object.
RETURNS | DESCRIPTION |
---|---|
SerializedNotImplemented
|
|
configurable_fields
¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
Configure particular Runnable
fields at runtime.
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
A dictionary of
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If a configuration key is not found in the |
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives
¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]]
) -> RunnableSerializable[Input, Output]
Configure alternatives for Runnable
objects that can be set at runtime.
PARAMETER | DESCRIPTION |
---|---|
which
|
The
TYPE:
|
default_key
|
The default key to use if no alternative is selected.
TYPE:
|
prefix_keys
|
Whether to prefix the keys with the
TYPE:
|
**kwargs
|
A dictionary of keys to
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
RunnableSerializable[Input, Output]
|
A new |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
langchain_core.vectorstores.in_memory.InMemoryVectorStore
¶
Bases: VectorStore
In-memory vector store implementation.
Uses a dictionary, and computes cosine similarity for search using numpy.
Key init args — indexing params: embedding_function: Embeddings Embedding function to use.
Instantiate
Add Documents
from langchain_core.documents import Document
document_1 = Document(id="1", page_content="foo", metadata={"baz": "bar"})
document_2 = Document(id="2", page_content="thud", metadata={"bar": "baz"})
document_3 = Document(id="3", page_content="i will be deleted :(")
documents = [document_1, document_2, document_3]
vector_store.add_documents(documents=documents)
Inspect documents
Search
Search with filter
Search with score
Async
# add documents
# await vector_store.aadd_documents(documents=documents)
# delete documents
# await vector_store.adelete(ids=["3"])
# search
# results = vector_store.asimilarity_search(query="thud", k=1)
# search with score
results = await vector_store.asimilarity_search_with_score(query="qux", k=1)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
Use as Retriever
METHOD | DESCRIPTION |
---|---|
__init__ |
Initialize with the given embedding function. |
delete |
Delete by vector ID or other criteria. |
adelete |
Async delete by vector ID or other criteria. |
add_documents |
Add or update documents in the vectorstore. |
aadd_documents |
Async run more documents through the embeddings and add to the |
get_by_ids |
Get documents by their ids. |
aget_by_ids |
Async get documents by their ids. |
similarity_search_with_score_by_vector |
Search for the most similar documents to the given embedding. |
similarity_search_with_score |
Run similarity search with distance. |
asimilarity_search_with_score |
Async run similarity search with distance. |
similarity_search_by_vector |
Return docs most similar to embedding vector. |
asimilarity_search_by_vector |
Async return docs most similar to embedding vector. |
similarity_search |
Return docs most similar to query. |
asimilarity_search |
Async return docs most similar to query. |
max_marginal_relevance_search_by_vector |
Return docs selected using the maximal marginal relevance. |
max_marginal_relevance_search |
Return docs selected using the maximal marginal relevance. |
amax_marginal_relevance_search |
Async return docs selected using the maximal marginal relevance. |
from_texts |
Return VectorStore initialized from texts and embeddings. |
afrom_texts |
Async return VectorStore initialized from texts and embeddings. |
load |
Load a vector store from a file. |
dump |
Dump the vector store to a file. |
add_texts |
Run more texts through the embeddings and add to the |
aadd_texts |
Async run more texts through the embeddings and add to the |
search |
Return docs most similar to query using a specified search type. |
asearch |
Async return docs most similar to query using a specified search type. |
similarity_search_with_relevance_scores |
Return docs and relevance scores in the range |
asimilarity_search_with_relevance_scores |
Async return docs and relevance scores in the range |
amax_marginal_relevance_search_by_vector |
Async return docs selected using the maximal marginal relevance. |
from_documents |
Return |
afrom_documents |
Async return |
as_retriever |
Return |
__init__
¶
__init__(embedding: Embeddings) -> None
Initialize with the given embedding function.
PARAMETER | DESCRIPTION |
---|---|
embedding
|
embedding function to use.
TYPE:
|
delete
¶
adelete
async
¶
Async delete by vector ID or other criteria.
PARAMETER | DESCRIPTION |
---|---|
ids
|
List of ids to delete. If |
**kwargs
|
Other keyword arguments that subclasses might use.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
bool | None
|
True if deletion is successful, False otherwise, None if not implemented. |
add_documents
¶
add_documents(
documents: list[Document], ids: list[str] | None = None, **kwargs: Any
) -> list[str]
Add or update documents in the vectorstore.
PARAMETER | DESCRIPTION |
---|---|
documents
|
Documents to add to the |
**kwargs
|
Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[str]
|
List of IDs of the added texts. |
aadd_documents
async
¶
get_by_ids
¶
aget_by_ids
async
¶
similarity_search_with_score_by_vector
¶
similarity_search_with_score_by_vector(
embedding: list[float],
k: int = 4,
filter: Callable[[Document], bool] | None = None,
**_kwargs: Any
) -> list[tuple[Document, float]]
Search for the most similar documents to the given embedding.
PARAMETER | DESCRIPTION |
---|---|
embedding
|
The embedding to search for. |
k
|
The number of documents to return.
TYPE:
|
filter
|
A function to filter the documents. |
RETURNS | DESCRIPTION |
---|---|
list[tuple[Document, float]]
|
A list of tuples of Document objects and their similarity scores. |
similarity_search_with_score
¶
asimilarity_search_with_score
async
¶
similarity_search_by_vector
¶
Return docs most similar to embedding vector.
PARAMETER | DESCRIPTION |
---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of Documents to return.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
asimilarity_search_by_vector
async
¶
Async return docs most similar to embedding vector.
PARAMETER | DESCRIPTION |
---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of Documents to return.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
similarity_search
¶
asimilarity_search
async
¶
Async return docs most similar to query.
PARAMETER | DESCRIPTION |
---|---|
query
|
Input text.
TYPE:
|
k
|
Number of Documents to return.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
max_marginal_relevance_search_by_vector
¶
max_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
*,
filter: Callable[[Document], bool] | None = None,
**kwargs: Any
) -> list[Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
PARAMETER | DESCRIPTION |
---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of Documents to return.
TYPE:
|
fetch_k
|
Number of Documents to fetch to pass to MMR algorithm.
TYPE:
|
lambda_mult
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
max_marginal_relevance_search
¶
max_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
PARAMETER | DESCRIPTION |
---|---|
query
|
Text to look up documents similar to.
TYPE:
|
k
|
Number of Documents to return.
TYPE:
|
fetch_k
|
Number of Documents to fetch to pass to MMR algorithm.
TYPE:
|
lambda_mult
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
amax_marginal_relevance_search
async
¶
amax_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
Async return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
PARAMETER | DESCRIPTION |
---|---|
query
|
Text to look up documents similar to.
TYPE:
|
k
|
Number of Documents to return.
TYPE:
|
fetch_k
|
Number of Documents to fetch to pass to MMR algorithm.
TYPE:
|
lambda_mult
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
from_texts
classmethod
¶
from_texts(
texts: list[str],
embedding: Embeddings,
metadatas: list[dict] | None = None,
**kwargs: Any
) -> InMemoryVectorStore
Return VectorStore initialized from texts and embeddings.
PARAMETER | DESCRIPTION |
---|---|
texts
|
Texts to add to the |
embedding
|
Embedding function to use.
TYPE:
|
metadatas
|
Optional list of metadatas associated with the texts. |
ids
|
Optional list of IDs associated with the texts. |
**kwargs
|
Additional keyword arguments.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
VST
|
VectorStore initialized from texts and embeddings. |
afrom_texts
async
classmethod
¶
afrom_texts(
texts: list[str],
embedding: Embeddings,
metadatas: list[dict] | None = None,
**kwargs: Any
) -> InMemoryVectorStore
Async return VectorStore initialized from texts and embeddings.
PARAMETER | DESCRIPTION |
---|---|
texts
|
Texts to add to the |
embedding
|
Embedding function to use.
TYPE:
|
metadatas
|
Optional list of metadatas associated with the texts. |
ids
|
Optional list of IDs associated with the texts. |
**kwargs
|
Additional keyword arguments.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Self
|
VectorStore initialized from texts and embeddings. |
load
classmethod
¶
load(path: str, embedding: Embeddings, **kwargs: Any) -> InMemoryVectorStore
Load a vector store from a file.
PARAMETER | DESCRIPTION |
---|---|
path
|
The path to load the vector store from.
TYPE:
|
embedding
|
The embedding to use.
TYPE:
|
**kwargs
|
Additional arguments to pass to the constructor.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
InMemoryVectorStore
|
A VectorStore object. |
dump
¶
dump(path: str) -> None
Dump the vector store to a file.
PARAMETER | DESCRIPTION |
---|---|
path
|
The path to dump the vector store to.
TYPE:
|
add_texts
¶
add_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any
) -> list[str]
Run more texts through the embeddings and add to the VectorStore
.
PARAMETER | DESCRIPTION |
---|---|
texts
|
Iterable of strings to add to the |
metadatas
|
Optional list of metadatas associated with the texts. |
ids
|
Optional list of IDs associated with the texts. |
**kwargs
|
vectorstore specific parameters.
One of the kwargs should be
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[str]
|
List of ids from adding the texts into the |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the number of metadatas does not match the number of texts. |
ValueError
|
If the number of ids does not match the number of texts. |
aadd_texts
async
¶
aadd_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any
) -> list[str]
Async run more texts through the embeddings and add to the VectorStore
.
PARAMETER | DESCRIPTION |
---|---|
texts
|
Iterable of strings to add to the |
metadatas
|
Optional list of metadatas associated with the texts. |
ids
|
Optional list |
**kwargs
|
vectorstore specific parameters.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[str]
|
List of ids from adding the texts into the |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If the number of metadatas does not match the number of texts. |
ValueError
|
If the number of ids does not match the number of texts. |
search
¶
Return docs most similar to query using a specified search type.
PARAMETER | DESCRIPTION |
---|---|
query
|
Input text
TYPE:
|
search_type
|
Type of search to perform. Can be "similarity", "mmr", or "similarity_score_threshold".
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If search_type is not one of "similarity", "mmr", or "similarity_score_threshold". |
asearch
async
¶
Async return docs most similar to query using a specified search type.
PARAMETER | DESCRIPTION |
---|---|
query
|
Input text.
TYPE:
|
search_type
|
Type of search to perform. Can be "similarity", "mmr", or "similarity_score_threshold".
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
RAISES | DESCRIPTION |
---|---|
ValueError
|
If search_type is not one of "similarity", "mmr", or "similarity_score_threshold". |
similarity_search_with_relevance_scores
¶
similarity_search_with_relevance_scores(
query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]
Return docs and relevance scores in the range [0, 1]
.
0
is dissimilar, 1
is most similar.
PARAMETER | DESCRIPTION |
---|---|
query
|
Input text.
TYPE:
|
k
|
Number of Documents to return.
TYPE:
|
**kwargs
|
kwargs to be passed to similarity search. Should include
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[tuple[Document, float]]
|
List of Tuples of |
asimilarity_search_with_relevance_scores
async
¶
asimilarity_search_with_relevance_scores(
query: str, k: int = 4, **kwargs: Any
) -> list[tuple[Document, float]]
Async return docs and relevance scores in the range [0, 1]
.
0
is dissimilar, 1
is most similar.
PARAMETER | DESCRIPTION |
---|---|
query
|
Input text.
TYPE:
|
k
|
Number of Documents to return.
TYPE:
|
**kwargs
|
kwargs to be passed to similarity search. Should include
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[tuple[Document, float]]
|
List of Tuples of |
amax_marginal_relevance_search_by_vector
async
¶
amax_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any
) -> list[Document]
Async return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
PARAMETER | DESCRIPTION |
---|---|
embedding
|
Embedding to look up documents similar to. |
k
|
Number of Documents to return.
TYPE:
|
fetch_k
|
Number of Documents to fetch to pass to MMR algorithm.
TYPE:
|
lambda_mult
|
Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.
TYPE:
|
**kwargs
|
Arguments to pass to the search method.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list[Document]
|
List of |
from_documents
classmethod
¶
from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) -> Self
Return VectorStore
initialized from documents and embeddings.
PARAMETER | DESCRIPTION |
---|---|
documents
|
List of |
embedding
|
Embedding function to use.
TYPE:
|
**kwargs
|
Additional keyword arguments.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Self
|
|
afrom_documents
async
classmethod
¶
afrom_documents(
documents: list[Document], embedding: Embeddings, **kwargs: Any
) -> Self
Async return VectorStore
initialized from documents and embeddings.
PARAMETER | DESCRIPTION |
---|---|
documents
|
List of |
embedding
|
Embedding function to use.
TYPE:
|
**kwargs
|
Additional keyword arguments.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Self
|
|
as_retriever
¶
as_retriever(**kwargs: Any) -> VectorStoreRetriever
Return VectorStoreRetriever
initialized from this VectorStore
.
PARAMETER | DESCRIPTION |
---|---|
**kwargs
|
Keyword arguments to pass to the search function. Can include: search_type: Defines the type of search that the Retriever should perform. Can be "similarity" (default), "mmr", or "similarity_score_threshold". search_kwargs: Keyword arguments to pass to the search function. Can include things like: k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5) filter: Filter by document metadata
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
VectorStoreRetriever
|
Retriever class for |
Examples:
# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
search_type="mmr", search_kwargs={"k": 6, "lambda_mult": 0.25}
)
# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 50})
# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": 0.8},
)
# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={"k": 1})
# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
search_kwargs={"filter": {"paper_title": "GPT-4 Technical Report"}}
)