Chat Models¶
Chat models.
Modules:
Name | Description |
---|---|
base |
Factory functions for chat models. |
Classes:
Name | Description |
---|---|
BaseChatModel |
Base class for chat models. |
Functions:
Name | Description |
---|---|
init_chat_model |
Initialize a ChatModel from the model name and provider. |
BaseChatModel
¶
Bases: BaseLanguageModel[AIMessage]
, ABC
Base class for chat models.
Key imperative methods
Methods that actually call the underlying model.
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| Method | Input | Output | Description |
+===========================+================================================================+=====================================================================+==================================================================================================+
| invoke
| str | list[dict | tuple | BaseMessage] | PromptValue | BaseMessage | A single chat model call. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| ainvoke
| ''' | BaseMessage | Defaults to running invoke in an async executor. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| stream
| ''' | Iterator[BaseMessageChunk] | Defaults to yielding output of invoke. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| astream
| ''' | AsyncIterator[BaseMessageChunk] | Defaults to yielding output of ainvoke. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| astream_events
| ''' | AsyncIterator[StreamEvent] | Event types: 'on_chat_model_start', 'on_chat_model_stream', 'on_chat_model_end'. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| batch
| list['''] | list[BaseMessage] | Defaults to running invoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| abatch
| list['''] | list[BaseMessage] | Defaults to running ainvoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| batch_as_completed
| list['''] | Iterator[tuple[int, Union[BaseMessage, Exception]]] | Defaults to running invoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
| abatch_as_completed
| list['''] | AsyncIterator[tuple[int, Union[BaseMessage, Exception]]] | Defaults to running ainvoke in concurrent threads. |
+---------------------------+----------------------------------------------------------------+---------------------------------------------------------------------+--------------------------------------------------------------------------------------------------+
This table provides a brief overview of the main imperative methods. Please see the base Runnable reference for full documentation.
Key declarative methods
Methods for creating another Runnable using the ChatModel.
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| Method | Description |
+==================================+===========================================================================================================+
| bind_tools
| Create ChatModel that can call tools. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| with_structured_output
| Create wrapper that structures model output using schema. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| with_retry
| Create wrapper that retries model calls on failure. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| with_fallbacks
| Create wrapper that falls back to other models on failure. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| configurable_fields
| Specify init args of the model that can be configured at runtime via the RunnableConfig. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
| configurable_alternatives
| Specify alternative models which can be swapped in at runtime via the RunnableConfig. |
+----------------------------------+-----------------------------------------------------------------------------------------------------------+
This table provides a brief overview of the main declarative methods. Please see the reference for each method for full documentation.
Creating custom chat model
Custom chat model implementations should inherit from this class. Please reference the table below for information about which methods and properties are required or optional for implementations.
+----------------------------------+--------------------------------------------------------------------+-------------------+
| Method/Property | Description | Required/Optional |
+==================================+====================================================================+===================+
| _generate
| Use to generate a chat result from a prompt | Required |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| _llm_type
(property) | Used to uniquely identify the type of the model. Used for logging. | Required |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| _identifying_params
(property) | Represent model parameterization for tracing purposes. | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| _stream
| Use to implement streaming | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| _agenerate
| Use to implement a native async method | Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
| _astream
| Use to implement async version of _stream
| Optional |
+----------------------------------+--------------------------------------------------------------------+-------------------+
Follow the guide for more information on how to implement a custom Chat Model: Guide.
Methods:
Name | Description |
---|---|
get_name |
Get the name of the |
get_input_schema |
Get a pydantic model that can be used to validate input to the Runnable. |
get_input_jsonschema |
Get a JSON schema that represents the input to the |
get_output_schema |
Get a pydantic model that can be used to validate output to the |
get_output_jsonschema |
Get a JSON schema that represents the output of the |
config_schema |
The type of config this |
get_config_jsonschema |
Get a JSON schema that represents the config of the |
get_graph |
Return a graph representation of this |
get_prompts |
Return a list of prompts used by this |
__or__ |
Runnable "or" operator. |
__ror__ |
Runnable "reverse-or" operator. |
pipe |
Pipe runnables. |
pick |
Pick keys from the output dict of this |
assign |
Assigns new fields to the dict output of this |
batch |
Default implementation runs invoke in parallel using a thread pool executor. |
batch_as_completed |
Run |
abatch |
Default implementation runs |
abatch_as_completed |
Run |
astream_log |
Stream all output from a |
astream_events |
Generate a stream of events. |
transform |
Transform inputs to outputs. |
atransform |
Transform inputs to outputs. |
bind |
Bind arguments to a |
with_config |
Bind config to a |
with_listeners |
Bind lifecycle listeners to a |
with_alisteners |
Bind async lifecycle listeners to a |
with_types |
Bind input and output types to a |
with_retry |
Create a new Runnable that retries the original Runnable on exceptions. |
map |
Return a new |
with_fallbacks |
Add fallbacks to a |
as_tool |
Create a |
__init__ |
|
is_lc_serializable |
Is this class serializable? |
get_lc_namespace |
Get the namespace of the langchain object. |
lc_id |
Return a unique identifier for this class for serialization purposes. |
to_json |
Serialize the |
to_json_not_implemented |
Serialize a "not implemented" object. |
configurable_fields |
Configure particular |
configurable_alternatives |
Configure alternatives for |
set_verbose |
If verbose is None, set it. |
get_token_ids |
Return the ordered ids of the tokens in a text. |
get_num_tokens |
Get the number of tokens present in the text. |
get_num_tokens_from_messages |
Get the number of tokens in the messages. |
raise_deprecation |
Emit deprecation warning if |
generate |
Pass a sequence of prompts to the model and return model generations. |
agenerate |
Asynchronously pass a sequence of prompts to a model and return generations. |
__call__ |
Call the model. |
call_as_llm |
Call the model. |
predict |
Predict the next message. |
dict |
Return a dictionary of the LLM. |
bind_tools |
Bind tools to the model. |
with_structured_output |
Model wrapper that returns outputs formatted to match the given schema. |
Attributes:
Name | Type | Description |
---|---|---|
InputType |
TypeAlias
|
Get the input type for this runnable. |
input_schema |
type[BaseModel]
|
The type of input this |
output_schema |
type[BaseModel]
|
Output schema. |
config_specs |
list[ConfigurableFieldSpec]
|
List configurable fields for this |
lc_secrets |
dict[str, str]
|
A map of constructor argument names to secret ids. |
lc_attributes |
dict
|
List of attribute names that should be included in the serialized kwargs. |
cache |
Union[BaseCache, bool, None]
|
Whether to cache the response. |
verbose |
bool
|
Whether to print out response text. |
callbacks |
Callbacks
|
Callbacks to add to the run trace. |
tags |
Optional[list[str]]
|
Tags to add to the run trace. |
metadata |
Optional[dict[str, Any]]
|
Metadata to add to the run trace. |
custom_get_token_ids |
Optional[Callable[[str], list[int]]]
|
Optional encoder to use for counting tokens. |
rate_limiter |
Optional[BaseRateLimiter]
|
An optional rate limiter to use for limiting the number of requests. |
disable_streaming |
Union[bool, Literal['tool_calling']]
|
Whether to disable streaming for this model. |
output_version |
Optional[str]
|
Version of |
OutputType |
Any
|
Get the output type for this runnable. |
input_schema
property
¶
input_schema: type[BaseModel]
The type of input this Runnable
accepts specified as a pydantic model.
output_schema
property
¶
output_schema: type[BaseModel]
Output schema.
The type of output this Runnable
produces specified as a pydantic model.
config_specs
property
¶
config_specs: list[ConfigurableFieldSpec]
List configurable fields for this Runnable
.
lc_secrets
property
¶
A map of constructor argument names to secret ids.
For example,
lc_attributes
property
¶
lc_attributes: dict
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor. Default is an empty dictionary.
cache
class-attribute
instance-attribute
¶
Whether to cache the response.
- If true, will use the global cache.
- If false, will not use a cache
- If None, will use the global cache if it's set, otherwise no cache.
- If instance of
BaseCache
, will use the provided cache.
Caching is not currently supported for streaming methods of models.
verbose
class-attribute
instance-attribute
¶
verbose: bool = Field(
default_factory=_get_verbosity, exclude=True, repr=False
)
Whether to print out response text.
callbacks
class-attribute
instance-attribute
¶
Callbacks to add to the run trace.
tags
class-attribute
instance-attribute
¶
Tags to add to the run trace.
metadata
class-attribute
instance-attribute
¶
Metadata to add to the run trace.
custom_get_token_ids
class-attribute
instance-attribute
¶
Optional encoder to use for counting tokens.
rate_limiter
class-attribute
instance-attribute
¶
rate_limiter: Optional[BaseRateLimiter] = Field(
default=None, exclude=True
)
An optional rate limiter to use for limiting the number of requests.
disable_streaming
class-attribute
instance-attribute
¶
Whether to disable streaming for this model.
If streaming is bypassed, then stream()
/astream()
/astream_events()
will
defer to invoke()
/ainvoke()
.
- If True, will always bypass streaming case.
- If
'tool_calling'
, will bypass streaming case only when the model is called with atools
keyword argument. In other words, LangChain will automatically switch to non-streaming behavior (invoke()
) only when the tools argument is provided. This offers the best of both worlds. - If False (default), will always use streaming case if available.
The main reason for this flag is that code might be written using stream()
and
a user may want to swap out a given model for another model whose the implementation
does not properly support streaming.
output_version
class-attribute
instance-attribute
¶
output_version: Optional[str] = Field(
default_factory=from_env(
"LC_OUTPUT_VERSION", default=None
)
)
Version of AIMessage
output format to store in message content.
AIMessage.content_blocks
will lazily parse the contents of content
into a
standard format. This flag can be used to additionally store the standard format
in message content, e.g., for serialization purposes.
Supported values:
"v0"
: provider-specific format in content (can lazily-parse with.content_blocks
)"v1"
: standardized format in content (consistent with.content_blocks
)
Partner packages (e.g., langchain-openai
) can also use this field to roll out
new content formats in a backward-compatible way.
.. versionadded:: 1.0
get_name
¶
get_input_schema
¶
Get a pydantic model that can be used to validate input to the Runnable.
Runnable
s that leverage the configurable_fields
and
configurable_alternatives
methods will have a dynamic input schema that
depends on which configuration the Runnable
is invoked with.
This method allows to get an input schema for a specific configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Optional[RunnableConfig]
|
A config to use when generating the schema. |
None
|
Returns:
Type | Description |
---|---|
type[BaseModel]
|
A pydantic model that can be used to validate input. |
get_input_jsonschema
¶
Get a JSON schema that represents the input to the Runnable
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Optional[RunnableConfig]
|
A config to use when generating the schema. |
None
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A JSON schema that represents the input to the |
Example:
.. code-block:: python
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
runnable = RunnableLambda(add_one)
print(runnable.get_input_jsonschema())
.. versionadded:: 0.3.0
get_output_schema
¶
Get a pydantic model that can be used to validate output to the Runnable
.
Runnable
s that leverage the configurable_fields
and
configurable_alternatives
methods will have a dynamic output schema that
depends on which configuration the Runnable
is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Optional[RunnableConfig]
|
A config to use when generating the schema. |
None
|
Returns:
Type | Description |
---|---|
type[BaseModel]
|
A pydantic model that can be used to validate output. |
get_output_jsonschema
¶
Get a JSON schema that represents the output of the Runnable
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Optional[RunnableConfig]
|
A config to use when generating the schema. |
None
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A JSON schema that represents the output of the |
Example:
.. code-block:: python
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
runnable = RunnableLambda(add_one)
print(runnable.get_output_jsonschema())
.. versionadded:: 0.3.0
config_schema
¶
The type of config this Runnable
accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives
methods.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
include
|
Optional[Sequence[str]]
|
A list of fields to include in the config schema. |
None
|
Returns:
Type | Description |
---|---|
type[BaseModel]
|
A pydantic model that can be used to validate config. |
get_config_jsonschema
¶
Get a JSON schema that represents the config of the Runnable
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
include
|
Optional[Sequence[str]]
|
A list of fields to include in the config schema. |
None
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A JSON schema that represents the config of the |
.. versionadded:: 0.3.0
get_graph
¶
get_graph(config: Optional[RunnableConfig] = None) -> Graph
Return a graph representation of this Runnable
.
get_prompts
¶
Return a list of prompts used by this Runnable
.
__or__
¶
__or__(
other: Union[
Runnable[Any, Other],
Callable[[Iterator[Any]], Iterator[Other]],
Callable[
[AsyncIterator[Any]], AsyncIterator[Other]
],
Callable[[Any], Other],
Mapping[
str,
Union[
Runnable[Any, Other],
Callable[[Any], Other],
Any,
],
],
],
) -> RunnableSerializable[Input, Other]
Runnable "or" operator.
Compose this Runnable
with another object to create a
RunnableSequence
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
Union[Runnable[Any, Other], Callable[[Iterator[Any]], Iterator[Other]], Callable[[AsyncIterator[Any]], AsyncIterator[Other]], Callable[[Any], Other], Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]]]
|
Another |
required |
Returns:
Type | Description |
---|---|
RunnableSerializable[Input, Other]
|
A new |
__ror__
¶
__ror__(
other: Union[
Runnable[Other, Any],
Callable[[Iterator[Other]], Iterator[Any]],
Callable[
[AsyncIterator[Other]], AsyncIterator[Any]
],
Callable[[Other], Any],
Mapping[
str,
Union[
Runnable[Other, Any],
Callable[[Other], Any],
Any,
],
],
],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" operator.
Compose this Runnable
with another object to create a
RunnableSequence
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
Union[Runnable[Other, Any], Callable[[Iterator[Other]], Iterator[Any]], Callable[[AsyncIterator[Other]], AsyncIterator[Any]], Callable[[Other], Any], Mapping[str, Union[Runnable[Other, Any], Callable[[Other], Any], Any]]]
|
Another |
required |
Returns:
Type | Description |
---|---|
RunnableSerializable[Other, Output]
|
A new |
pipe
¶
pipe(
*others: Union[
Runnable[Any, Other], Callable[[Any], Other]
],
name: Optional[str] = None,
) -> RunnableSerializable[Input, Other]
Pipe runnables.
Compose this Runnable
with Runnable
-like objects to make a
RunnableSequence
.
Equivalent to RunnableSequence(self, *others)
or self | others[0] | ...
Example:
.. code-block:: python
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*others
|
Union[Runnable[Any, Other], Callable[[Any], Other]]
|
Other |
()
|
name
|
Optional[str]
|
An optional name for the resulting |
None
|
Returns:
Type | Description |
---|---|
RunnableSerializable[Input, Other]
|
A new |
pick
¶
Pick keys from the output dict of this Runnable
.
Pick single key:
.. code-block:: python
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
Pick list of keys:
.. code-block:: python
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(
str=as_str, json=as_json, bytes=RunnableLambda(as_bytes)
)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys
|
Union[str, list[str]]
|
A key or list of keys to pick from the output dict. |
required |
Returns:
Type | Description |
---|---|
RunnableSerializable[Any, Any]
|
a new |
assign
¶
assign(
**kwargs: Union[
Runnable[dict[str, Any], Any],
Callable[[dict[str, Any]], Any],
Mapping[
str,
Union[
Runnable[dict[str, Any], Any],
Callable[[dict[str, Any]], Any],
],
],
],
) -> RunnableSerializable[Any, Any]
Assigns new fields to the dict output of this Runnable
.
.. code-block:: python
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
llm = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | llm | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs
|
Union[Runnable[dict[str, Any], Any], Callable[[dict[str, Any]], Any], Mapping[str, Union[Runnable[dict[str, Any], Any], Callable[[dict[str, Any]], Any]]]]
|
A mapping of keys to |
{}
|
Returns:
Type | Description |
---|---|
RunnableSerializable[Any, Any]
|
A new |
batch
¶
batch(
inputs: list[Input],
config: Optional[
Union[RunnableConfig, list[RunnableConfig]]
] = None,
*,
return_exceptions: bool = False,
**kwargs: Optional[Any],
) -> list[Output]
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable
uses an API which supports a batch mode.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
list[Input]
|
A list of inputs to the |
required |
config
|
Optional[Union[RunnableConfig, list[RunnableConfig]]]
|
A config to use when invoking the |
None
|
return_exceptions
|
bool
|
Whether to return exceptions instead of raising them. Defaults to False. |
False
|
**kwargs
|
Optional[Any]
|
Additional keyword arguments to pass to the |
{}
|
Returns:
Type | Description |
---|---|
list[Output]
|
A list of outputs from the |
batch_as_completed
¶
batch_as_completed(
inputs: Sequence[Input],
config: Optional[
Union[RunnableConfig, Sequence[RunnableConfig]]
] = None,
*,
return_exceptions: bool = False,
**kwargs: Optional[Any],
) -> Iterator[tuple[int, Union[Output, Exception]]]
Run invoke
in parallel on a list of inputs.
Yields results as they complete.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Sequence[Input]
|
A list of inputs to the |
required |
config
|
Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]
|
A config to use when invoking the |
None
|
return_exceptions
|
bool
|
Whether to return exceptions instead of raising them. Defaults to False. |
False
|
**kwargs
|
Optional[Any]
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
tuple[int, Union[Output, Exception]]
|
Tuples of the index of the input and the output from the |
abatch
async
¶
abatch(
inputs: list[Input],
config: Optional[
Union[RunnableConfig, list[RunnableConfig]]
] = None,
*,
return_exceptions: bool = False,
**kwargs: Optional[Any],
) -> list[Output]
Default implementation runs ainvoke
in parallel using asyncio.gather
.
The default implementation of batch
works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable
uses an API which supports a batch mode.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
list[Input]
|
A list of inputs to the |
required |
config
|
Optional[Union[RunnableConfig, list[RunnableConfig]]]
|
A config to use when invoking the |
None
|
return_exceptions
|
bool
|
Whether to return exceptions instead of raising them. Defaults to False. |
False
|
**kwargs
|
Optional[Any]
|
Additional keyword arguments to pass to the |
{}
|
Returns:
Type | Description |
---|---|
list[Output]
|
A list of outputs from the |
abatch_as_completed
async
¶
abatch_as_completed(
inputs: Sequence[Input],
config: Optional[
Union[RunnableConfig, Sequence[RunnableConfig]]
] = None,
*,
return_exceptions: bool = False,
**kwargs: Optional[Any],
) -> AsyncIterator[tuple[int, Union[Output, Exception]]]
Run ainvoke
in parallel on a list of inputs.
Yields results as they complete.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs
|
Sequence[Input]
|
A list of inputs to the |
required |
config
|
Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]
|
A config to use when invoking the |
None
|
return_exceptions
|
bool
|
Whether to return exceptions instead of raising them. Defaults to False. |
False
|
kwargs
|
Optional[Any]
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
AsyncIterator[tuple[int, Union[Output, Exception]]]
|
A tuple of the index of the input and the output from the |
astream_log
async
¶
astream_log(
input: Any,
config: Optional[RunnableConfig] = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Optional[Sequence[str]] = None,
include_types: Optional[Sequence[str]] = None,
include_tags: Optional[Sequence[str]] = None,
exclude_names: Optional[Sequence[str]] = None,
exclude_types: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> Union[
AsyncIterator[RunLogPatch], AsyncIterator[RunLog]
]
Stream all output from a Runnable
, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of Jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run.
The Jsonpatch ops can be applied in order to construct state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Any
|
The input to the |
required |
config
|
Optional[RunnableConfig]
|
The config to use for the |
None
|
diff
|
bool
|
Whether to yield diffs between each step or the current state. |
True
|
with_streamed_output_list
|
bool
|
Whether to yield the |
True
|
include_names
|
Optional[Sequence[str]]
|
Only include logs with these names. |
None
|
include_types
|
Optional[Sequence[str]]
|
Only include logs with these types. |
None
|
include_tags
|
Optional[Sequence[str]]
|
Only include logs with these tags. |
None
|
exclude_names
|
Optional[Sequence[str]]
|
Exclude logs with these names. |
None
|
exclude_types
|
Optional[Sequence[str]]
|
Exclude logs with these types. |
None
|
exclude_tags
|
Optional[Sequence[str]]
|
Exclude logs with these tags. |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]
|
A |
astream_events
async
¶
astream_events(
input: Any,
config: Optional[RunnableConfig] = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Optional[Sequence[str]] = None,
include_types: Optional[Sequence[str]] = None,
include_tags: Optional[Sequence[str]] = None,
exclude_names: Optional[Sequence[str]] = None,
exclude_types: Optional[Sequence[str]] = None,
exclude_tags: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
Generate a stream of events.
Use to create an iterator over StreamEvents
that provide real-time information
about the progress of the Runnable
, including StreamEvents
from intermediate
results.
A StreamEvent
is a dictionary with the following schema:
event
: str - Event names are of the format:on_[runnable_type]_(start|stream|end)
.name
: str - The name of theRunnable
that generated the event.run_id
: str - randomly generated ID associated with the given execution of theRunnable
that emitted the event. A childRunnable
that gets invoked as part of the execution of a parentRunnable
is assigned its own unique ID.parent_ids
: list[str] - The IDs of the parent runnables that generated the event. The rootRunnable
will have an empty list. The order of the parent IDs is from the root to the immediate parent. Only available for v2 version of the API. The v1 version of the API will return an empty list.tags
: Optional[list[str]] - The tags of theRunnable
that generated the event.metadata
: Optional[dict[str, Any]] - The metadata of theRunnable
that generated the event.data
: dict[str, Any]
Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.
.. note:: This reference table is for the v2 version of the schema.
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| event | name | chunk | input | output |
+==========================+==================+=====================================+===================================================+=====================================================+
| on_chat_model_start
| [model name] | | {"messages": [[SystemMessage, HumanMessage]]}
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_chat_model_stream
| [model name] | AIMessageChunk(content="hello")
| | |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_chat_model_end
| [model name] | | {"messages": [[SystemMessage, HumanMessage]]}
| AIMessageChunk(content="hello world")
|
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_llm_start
| [model name] | | {'input': 'hello'}
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_llm_stream
| [model name] | 'Hello'
| | |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_llm_end
| [model name] | | 'Hello human!'
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_chain_start
| format_docs | | | |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_chain_stream
| format_docs | 'hello world!, goodbye world!'
| | |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_chain_end
| format_docs | | [Document(...)]
| 'hello world!, goodbye world!'
|
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_tool_start
| some_tool | | {"x": 1, "y": "2"}
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_tool_end
| some_tool | | | {"x": 1, "y": "2"}
|
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_retriever_start
| [retriever name] | | {"query": "hello"}
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_retriever_end
| [retriever name] | | {"query": "hello"}
| [Document(...), ..]
|
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_prompt_start
| [template_name] | | {"question": "hello"}
| |
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
| on_prompt_end
| [template_name] | | {"question": "hello"}
| ChatPromptValue(messages: [SystemMessage, ...])
|
+--------------------------+------------------+-------------------------------------+---------------------------------------------------+-----------------------------------------------------+
In addition to the standard events, users can also dispatch custom events (see example below).
Custom events will be only be surfaced with in the v2 version of the API!
A custom event has following format:
+-----------+------+-----------------------------------------------------------------------------------------------------------+ | Attribute | Type | Description | +===========+======+===========================================================================================================+ | name | str | A user defined name for the event. | +-----------+------+-----------------------------------------------------------------------------------------------------------+ | data | Any | The data associated with the event. This can be anything, though we suggest making it JSON serializable. | +-----------+------+-----------------------------------------------------------------------------------------------------------+
Here are declarations associated with the standard events shown above:
format_docs
:
.. code-block:: python
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool
:
.. code-block:: python
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
prompt
:
.. code-block:: python
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
Example:
.. code-block:: python
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [
event async for event in chain.astream_events("hello", version="v2")
]
# will produce the following events (run_id, and parent_ids
# has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
Example: Dispatch Custom Event
.. code-block:: python
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Any
|
The input to the |
required |
config
|
Optional[RunnableConfig]
|
The config to use for the |
None
|
version
|
Literal['v1', 'v2']
|
The version of the schema to use either |
'v2'
|
include_names
|
Optional[Sequence[str]]
|
Only include events from |
None
|
include_types
|
Optional[Sequence[str]]
|
Only include events from |
None
|
include_tags
|
Optional[Sequence[str]]
|
Only include events from |
None
|
exclude_names
|
Optional[Sequence[str]]
|
Exclude events from |
None
|
exclude_types
|
Optional[Sequence[str]]
|
Exclude events from |
None
|
exclude_tags
|
Optional[Sequence[str]]
|
Exclude events from |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
AsyncIterator[StreamEvent]
|
An async stream of |
Raises:
Type | Description |
---|---|
NotImplementedError
|
If the version is not |
transform
¶
transform(
input: Iterator[Input],
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> Iterator[Output]
Transform inputs to outputs.
Default implementation of transform, which buffers input and calls astream
.
Subclasses should override this method if they can start producing output while input is still being generated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
Iterator[Input]
|
An iterator of inputs to the |
required |
config
|
Optional[RunnableConfig]
|
The config to use for the |
None
|
kwargs
|
Optional[Any]
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
Output
|
The output of the |
atransform
async
¶
atransform(
input: AsyncIterator[Input],
config: Optional[RunnableConfig] = None,
**kwargs: Optional[Any],
) -> AsyncIterator[Output]
Transform inputs to outputs.
Default implementation of atransform, which buffers input and calls astream
.
Subclasses should override this method if they can start producing output while input is still being generated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input
|
AsyncIterator[Input]
|
An async iterator of inputs to the |
required |
config
|
Optional[RunnableConfig]
|
The config to use for the |
None
|
kwargs
|
Optional[Any]
|
Additional keyword arguments to pass to the |
{}
|
Yields:
Type | Description |
---|---|
AsyncIterator[Output]
|
The output of the |
bind
¶
bind(**kwargs: Any) -> Runnable[Input, Output]
Bind arguments to a Runnable
, returning a new Runnable
.
Useful when a Runnable
in a chain requires an argument that is not
in the output of the previous Runnable
or included in the user input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kwargs
|
Any
|
The arguments to bind to the |
{}
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new |
Example:
.. code-block:: python
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
llm = ChatOllama(model="llama2")
# Without bind.
chain = llm | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind.
chain = llm.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config
¶
Bind config to a Runnable
, returning a new Runnable
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Optional[RunnableConfig]
|
The config to bind to the |
None
|
kwargs
|
Any
|
Additional keyword arguments to pass to the |
{}
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new |
with_listeners
¶
with_listeners(
*,
on_start: Optional[
Union[
Callable[[Run], None],
Callable[[Run, RunnableConfig], None],
]
] = None,
on_end: Optional[
Union[
Callable[[Run], None],
Callable[[Run, RunnableConfig], None],
]
] = None,
on_error: Optional[
Union[
Callable[[Run], None],
Callable[[Run, RunnableConfig], None],
]
] = None,
) -> Runnable[Input, Output]
Bind lifecycle listeners to a Runnable
, returning a new Runnable
.
The Run object contains information about the run, including its id
,
type
, input
, output
, error
, start_time
, end_time
, and
any tags or metadata added to the run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
on_start
|
Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]
|
Called before the |
None
|
on_end
|
Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]
|
Called after the |
None
|
on_error
|
Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]
|
Called if the |
None
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new |
Example:
.. code-block:: python
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners
¶
with_alisteners(
*,
on_start: Optional[AsyncListener] = None,
on_end: Optional[AsyncListener] = None,
on_error: Optional[AsyncListener] = None,
) -> Runnable[Input, Output]
Bind async lifecycle listeners to a Runnable
.
Returns a new Runnable
.
The Run object contains information about the run, including its id
,
type
, input
, output
, error
, start_time
, end_time
, and
any tags or metadata added to the run.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
on_start
|
Optional[AsyncListener]
|
Called asynchronously before the |
None
|
on_end
|
Optional[AsyncListener]
|
Called asynchronously after the |
None
|
on_error
|
Optional[AsyncListener]
|
Called asynchronously if the |
None
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new |
Example:
.. code-block:: python
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep : int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj : Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj : Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types
¶
with_types(
*,
input_type: Optional[type[Input]] = None,
output_type: Optional[type[Output]] = None,
) -> Runnable[Input, Output]
Bind input and output types to a Runnable
, returning a new Runnable
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_type
|
Optional[type[Input]]
|
The input type to bind to the |
None
|
output_type
|
Optional[type[Output]]
|
The output type to bind to the |
None
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new Runnable with the types bound. |
with_retry
¶
with_retry(
*,
retry_if_exception_type: tuple[
type[BaseException], ...
] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: Optional[
ExponentialJitterParams
] = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
Create a new Runnable that retries the original Runnable on exceptions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
retry_if_exception_type
|
tuple[type[BaseException], ...]
|
A tuple of exception types to retry on. Defaults to (Exception,). |
(Exception,)
|
wait_exponential_jitter
|
bool
|
Whether to add jitter to the wait time between retries. Defaults to True. |
True
|
stop_after_attempt
|
int
|
The maximum number of attempts to make before giving up. Defaults to 3. |
3
|
exponential_jitter_params
|
Optional[ExponentialJitterParams]
|
Parameters for
|
None
|
Returns:
Type | Description |
---|---|
Runnable[Input, Output]
|
A new Runnable that retries the original Runnable on exceptions. |
Example:
.. code-block:: python
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map
¶
Return a new Runnable
that maps a list of inputs to a list of outputs.
Calls invoke
with each input.
Returns:
Type | Description |
---|---|
Runnable[list[Input], list[Output]]
|
A new |
Example:
.. code-block:: python
from langchain_core.runnables import RunnableLambda
def _lambda(x: int) -> int:
return x + 1
runnable = RunnableLambda(_lambda)
print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4]
with_fallbacks
¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[
type[BaseException], ...
] = (Exception,),
exception_key: Optional[str] = None,
) -> RunnableWithFallbacks[Input, Output]
Add fallbacks to a Runnable
, returning a new Runnable
.
The new Runnable
will try the original Runnable
, and then each fallback
in order, upon failures.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fallbacks
|
Sequence[Runnable[Input, Output]]
|
A sequence of runnables to try if the original |
required |
exceptions_to_handle
|
tuple[type[BaseException], ...]
|
A tuple of exception types to handle.
Defaults to |
(Exception,)
|
exception_key
|
Optional[str]
|
If string is specified then handled exceptions will be passed
to fallbacks as part of the input under the specified key.
If None, exceptions will not be passed to fallbacks.
If used, the base |
None
|
Returns:
Type | Description |
---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
RunnableWithFallbacks[Input, Output]
|
fallback in order, upon failures. |
Example:
.. code-block:: python
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fallbacks
|
Sequence[Runnable[Input, Output]]
|
A sequence of runnables to try if the original |
required |
exceptions_to_handle
|
tuple[type[BaseException], ...]
|
A tuple of exception types to handle. |
(Exception,)
|
exception_key
|
Optional[str]
|
If string is specified then handled exceptions will be passed
to fallbacks as part of the input under the specified key.
If None, exceptions will not be passed to fallbacks.
If used, the base |
None
|
Returns:
Type | Description |
---|---|
RunnableWithFallbacks[Input, Output]
|
A new |
RunnableWithFallbacks[Input, Output]
|
fallback in order, upon failures. |
as_tool
¶
as_tool(
args_schema: Optional[type[BaseModel]] = None,
*,
name: Optional[str] = None,
description: Optional[str] = None,
arg_types: Optional[dict[str, type]] = None,
) -> BaseTool
Create a BaseTool
from a Runnable
.
as_tool
will instantiate a BaseTool
with a name, description, and
args_schema
from a Runnable
. Where possible, schemas are inferred
from runnable.get_input_schema
. Alternatively (e.g., if the
Runnable
takes a dict as input and the specific dict keys are not typed),
the schema can be specified directly with args_schema
. You can also
pass arg_types
to just specify the required arguments and their types.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args_schema
|
Optional[type[BaseModel]]
|
The schema for the tool. Defaults to None. |
None
|
name
|
Optional[str]
|
The name of the tool. Defaults to None. |
None
|
description
|
Optional[str]
|
The description of the tool. Defaults to None. |
None
|
arg_types
|
Optional[dict[str, type]]
|
A dictionary of argument names to types. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
BaseTool
|
A |
Typed dict input:
.. code-block:: python
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema via args_schema
:
.. code-block:: python
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict
input, specifying schema via arg_types
:
.. code-block:: python
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
String input:
.. code-block:: python
from langchain_core.runnables import RunnableLambda
def f(x: str) -> str:
return x + "a"
def g(x: str) -> str:
return x + "z"
runnable = RunnableLambda(f) | g
as_tool = runnable.as_tool()
as_tool.invoke("b")
.. versionadded:: 0.2.14
is_lc_serializable
classmethod
¶
is_lc_serializable() -> bool
Is this class serializable?
By design, even if a class inherits from Serializable, it is not serializable by default. This is to prevent accidental serialization of objects that should not be serialized.
Returns:
Type | Description |
---|---|
bool
|
Whether the class is serializable. Default is False. |
get_lc_namespace
classmethod
¶
lc_id
classmethod
¶
Return a unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
For example, for the class langchain.llms.openai.OpenAI
, the id is
["langchain", "llms", "openai", "OpenAI"].
to_json
¶
to_json() -> Union[
SerializedConstructor, SerializedNotImplemented
]
Serialize the Runnable
to JSON.
Returns:
Type | Description |
---|---|
Union[SerializedConstructor, SerializedNotImplemented]
|
A JSON-serializable representation of the |
to_json_not_implemented
¶
Serialize a "not implemented" object.
Returns:
Type | Description |
---|---|
SerializedNotImplemented
|
SerializedNotImplemented. |
configurable_fields
¶
Configure particular Runnable
fields at runtime.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs
|
AnyConfigurableField
|
A dictionary of |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If a configuration key is not found in the |
Returns:
Type | Description |
---|---|
RunnableSerializable[Input, Output]
|
A new |
.. code-block:: python
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print(
"max_tokens_20: ", model.invoke("tell me something about chess").content
)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives
¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Union[
Runnable[Input, Output],
Callable[[], Runnable[Input, Output]],
],
) -> RunnableSerializable[Input, Output]
Configure alternatives for Runnables
that can be set at runtime.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
which
|
ConfigurableField
|
The |
required |
default_key
|
str
|
The default key to use if no alternative is selected.
Defaults to |
'default'
|
prefix_keys
|
bool
|
Whether to prefix the keys with the |
False
|
**kwargs
|
Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]
|
A dictionary of keys to |
{}
|
Returns:
Type | Description |
---|---|
RunnableSerializable[Input, Output]
|
A new |
.. code-block:: python
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-3-7-sonnet-20250219"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose
¶
get_token_ids
¶
get_num_tokens
¶
get_num_tokens_from_messages
¶
get_num_tokens_from_messages(
messages: list[BaseMessage],
tools: Optional[Sequence] = None,
) -> int
Get the number of tokens in the messages.
Useful for checking if an input fits in a model's context window.
.. note::
The base implementation of get_num_tokens_from_messages
ignores tool
schemas.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
list[BaseMessage]
|
The message inputs to tokenize. |
required |
tools
|
Optional[Sequence]
|
If provided, sequence of dict, |
None
|
Returns:
Type | Description |
---|---|
int
|
The sum of the number of tokens across the messages. |
raise_deprecation
classmethod
¶
Emit deprecation warning if callback_manager
is used.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
values
|
Dict
|
Values to validate. |
required |
Returns:
Name | Type | Description |
---|---|---|
Dict |
Any
|
Validated values. |
generate
¶
generate(
messages: list[list[BaseMessage]],
stop: Optional[list[str]] = None,
callbacks: Callbacks = None,
*,
tags: Optional[list[str]] = None,
metadata: Optional[dict[str, Any]] = None,
run_name: Optional[str] = None,
run_id: Optional[UUID] = None,
**kwargs: Any,
) -> LLMResult
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
list[list[BaseMessage]]
|
List of list of messages. |
required |
stop
|
Optional[list[str]]
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
None
|
callbacks
|
Callbacks
|
Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. |
None
|
tags
|
Optional[list[str]]
|
The tags to apply. |
None
|
metadata
|
Optional[dict[str, Any]]
|
The metadata to apply. |
None
|
run_name
|
Optional[str]
|
The name of the run. |
None
|
run_id
|
Optional[UUID]
|
The ID of the run. |
None
|
**kwargs
|
Any
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call. |
{}
|
Returns:
Type | Description |
---|---|
LLMResult
|
An LLMResult, which contains a list of candidate Generations for each input |
LLMResult
|
prompt and additional model provider-specific output. |
agenerate
async
¶
agenerate(
messages: list[list[BaseMessage]],
stop: Optional[list[str]] = None,
callbacks: Callbacks = None,
*,
tags: Optional[list[str]] = None,
metadata: Optional[dict[str, Any]] = None,
run_name: Optional[str] = None,
run_id: Optional[UUID] = None,
**kwargs: Any,
) -> LLMResult
Asynchronously pass a sequence of prompts to a model and return generations.
This method should make use of batched calls for models that expose a batched API.
Use this method when you want to:
- Take advantage of batched calls,
- Need more output from the model than just the top generated value,
- Are building chains that are agnostic to the underlying language model type (e.g., pure text completion models vs chat models).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
list[list[BaseMessage]]
|
List of list of messages. |
required |
stop
|
Optional[list[str]]
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
None
|
callbacks
|
Callbacks
|
Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. |
None
|
tags
|
Optional[list[str]]
|
The tags to apply. |
None
|
metadata
|
Optional[dict[str, Any]]
|
The metadata to apply. |
None
|
run_name
|
Optional[str]
|
The name of the run. |
None
|
run_id
|
Optional[UUID]
|
The ID of the run. |
None
|
**kwargs
|
Any
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call. |
{}
|
Returns:
Type | Description |
---|---|
LLMResult
|
An LLMResult, which contains a list of candidate Generations for each input |
LLMResult
|
prompt and additional model provider-specific output. |
__call__
¶
__call__(
messages: list[BaseMessage],
stop: Optional[list[str]] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> BaseMessage
Call the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
list[BaseMessage]
|
List of messages. |
required |
stop
|
Optional[list[str]]
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
None
|
callbacks
|
Callbacks
|
Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. |
None
|
**kwargs
|
Any
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call. |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If the generation is not a chat generation. |
Returns:
Type | Description |
---|---|
BaseMessage
|
The model output message. |
call_as_llm
¶
Call the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
message
|
str
|
The input message. |
required |
stop
|
Optional[list[str]]
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
None
|
**kwargs
|
Any
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call. |
{}
|
Returns:
Type | Description |
---|---|
str
|
The model output string. |
predict
¶
Predict the next message.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
The input message. |
required |
stop
|
Optional[Sequence[str]]
|
Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. |
None
|
**kwargs
|
Any
|
Arbitrary additional keyword arguments. These are usually passed to the model provider API call. |
{}
|
Raises:
Type | Description |
---|---|
ValueError
|
If the output is not a string. |
Returns:
Type | Description |
---|---|
str
|
The predicted output string. |
bind_tools
¶
bind_tools(
tools: Sequence[
Union[Dict[str, Any], type, Callable, BaseTool]
],
*,
tool_choice: Optional[Union[str]] = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, AIMessage]
Bind tools to the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tools
|
Sequence[Union[Dict[str, Any], type, Callable, BaseTool]]
|
Sequence of tools to bind to the model. |
required |
tool_choice
|
Optional[Union[str]]
|
The tool to use. If "any" then any tool can be used. |
None
|
Returns:
Type | Description |
---|---|
Runnable[LanguageModelInput, AIMessage]
|
A Runnable that returns a message. |
with_structured_output
¶
with_structured_output(
schema: Union[Dict, type],
*,
include_raw: bool = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]
Model wrapper that returns outputs formatted to match the given schema.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
schema
|
Union[Dict, type]
|
The output schema. Can be passed in as:
If |
required |
include_raw
|
bool
|
If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys |
False
|
Raises:
Type | Description |
---|---|
ValueError
|
If there are any unsupported |
NotImplementedError
|
If the model does not implement
|
Returns:
Type | Description |
---|---|
Runnable[LanguageModelInput, Union[Dict, BaseModel]]
|
A Runnable that takes same inputs as a :class: |
Runnable[LanguageModelInput, Union[Dict, BaseModel]]
|
If |
Runnable[LanguageModelInput, Union[Dict, BaseModel]]
|
an instance of |
Runnable[LanguageModelInput, Union[Dict, BaseModel]]
|
Otherwise, if |
Runnable[LanguageModelInput, Union[Dict, BaseModel]]
|
If |
Runnable[LanguageModelInput, Union[Dict, BaseModel]]
|
|
Runnable[LanguageModelInput, Union[Dict, BaseModel]]
|
|
Runnable[LanguageModelInput, Union[Dict, BaseModel]]
|
|
Pydantic schema (include_raw=False):
.. code-block:: python
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
Pydantic schema (include_raw=True):
.. code-block:: python
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
Dict schema (include_raw=False):
.. code-block:: python
from pydantic import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
dict_schema = convert_to_openai_tool(AnswerWithJustification)
llm = ChatModel(model="model-name", temperature=0)
structured_llm = llm.with_structured_output(dict_schema)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
.. versionchanged:: 0.2.26
Added support for TypedDict class.
init_chat_model
¶
init_chat_model(
model: str | None = None,
*,
model_provider: str | None = None,
configurable_fields: Literal["any"]
| list[str]
| tuple[str, ...]
| None = None,
config_prefix: str | None = None,
**kwargs: Any,
) -> BaseChatModel | _ConfigurableModel
Initialize a ChatModel from the model name and provider.
Note: Must have the integration package corresponding to the model provider installed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str | None
|
The name of the model, e.g. "o3-mini", "claude-3-5-sonnet-latest". You can also specify model and model provider in a single argument using '{model_provider}:{model}' format, e.g. "openai:o1". |
None
|
model_provider
|
str | None
|
The model provider if not specified as part of model arg (see above). Supported model_provider values and the corresponding integration package are:
Will attempt to infer model_provider from model if not specified. The following providers will be inferred based on these model prefixes:
|
None
|
configurable_fields
|
Literal['any'] | list[str] | tuple[str, ...] | None
|
Which model parameters are configurable:
Fields are assumed to have config_prefix stripped if there is a
config_prefix. If model is specified, then defaults to None. If model is
not specified, then defaults to Security Note: Setting |
None
|
config_prefix
|
str | None
|
If config_prefix is a non-empty string then model will be
configurable at runtime via the
|
None
|
temperature
|
Model temperature. |
required | |
max_tokens
|
Max output tokens. |
required | |
timeout
|
The maximum time (in seconds) to wait for a response from the model before canceling the request. |
required | |
max_retries
|
The maximum number of attempts the system will make to resend a request if it fails due to issues like network timeouts or rate limits. |
required | |
base_url
|
The URL of the API endpoint where requests are sent. |
required | |
rate_limiter
|
A |
required | |
kwargs
|
Any
|
Additional model-specific keyword args to pass to
|
{}
|
Returns:
Type | Description |
---|---|
BaseChatModel | _ConfigurableModel
|
A BaseChatModel corresponding to the model_name and model_provider specified if |
BaseChatModel | _ConfigurableModel
|
configurability is inferred to be False. If configurable, a chat model emulator |
BaseChatModel | _ConfigurableModel
|
that initializes the underlying model at runtime once a config is passed in. |
Raises:
Type | Description |
---|---|
ValueError
|
If model_provider cannot be inferred or isn't supported. |
ImportError
|
If the model provider integration package is not installed. |
.. dropdown:: Init non-configurable model :open:
.. code-block:: python
# pip install langchain langchain-openai langchain-anthropic langchain-google-vertexai
from langchain.chat_models import init_chat_model
o3_mini = init_chat_model("openai:o3-mini", temperature=0)
claude_sonnet = init_chat_model("anthropic:claude-3-5-sonnet-latest", temperature=0)
gemini_2_flash = init_chat_model("google_vertexai:gemini-2.5-flash", temperature=0)
o3_mini.invoke("what's your name")
claude_sonnet.invoke("what's your name")
gemini_2_flash.invoke("what's your name")
.. dropdown:: Partially configurable model with no default
.. code-block:: python
# pip install langchain langchain-openai langchain-anthropic
from langchain.chat_models import init_chat_model
# We don't need to specify configurable=True if a model isn't specified.
configurable_model = init_chat_model(temperature=0)
configurable_model.invoke(
"what's your name", config={"configurable": {"model": "gpt-4o"}}
)
# GPT-4o response
configurable_model.invoke(
"what's your name", config={"configurable": {"model": "claude-3-5-sonnet-latest"}}
)
# claude-3.5 sonnet response
.. dropdown:: Fully configurable model with a default
.. code-block:: python
# pip install langchain langchain-openai langchain-anthropic
from langchain.chat_models import init_chat_model
configurable_model_with_default = init_chat_model(
"openai:gpt-4o",
configurable_fields="any", # this allows us to configure other params like temperature, max_tokens, etc at runtime.
config_prefix="foo",
temperature=0,
)
configurable_model_with_default.invoke("what's your name")
# GPT-4o response with temperature 0
configurable_model_with_default.invoke(
"what's your name",
config={
"configurable": {
"foo_model": "anthropic:claude-3-5-sonnet-latest",
"foo_temperature": 0.6,
}
},
)
# Claude-3.5 sonnet response with temperature 0.6
.. dropdown:: Bind tools to a configurable model
You can call any ChatModel declarative methods on a configurable model in the
same way that you would with a normal model.
.. code-block:: python
# pip install langchain langchain-openai langchain-anthropic
from langchain.chat_models import init_chat_model
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
configurable_model = init_chat_model(
"gpt-4o", configurable_fields=("model", "model_provider"), temperature=0
)
configurable_model_with_tools = configurable_model.bind_tools(
[GetWeather, GetPopulation]
)
configurable_model_with_tools.invoke(
"Which city is hotter today and which is bigger: LA or NY?"
)
# GPT-4o response with tool calls
configurable_model_with_tools.invoke(
"Which city is hotter today and which is bigger: LA or NY?",
config={"configurable": {"model": "claude-3-5-sonnet-latest"}},
)
# Claude-3.5 sonnet response with tools
.. versionadded:: 0.2.7
.. versionchanged:: 0.2.8
Support for ``configurable_fields`` and ``config_prefix`` added.
.. versionchanged:: 0.2.12
Support for Ollama via langchain-ollama package added
(langchain_ollama.ChatOllama). Previously,
the now-deprecated langchain-community version of Ollama was imported
(langchain_community.chat_models.ChatOllama).
Support for AWS Bedrock models via the Converse API added
(model_provider="bedrock_converse").
.. versionchanged:: 0.3.5
Out of beta.
.. versionchanged:: 0.3.19
Support for Deepseek, IBM, Nvidia, and xAI models added.