construct_instance(
cls: type[QdrantVectorStore],
embedding: Embeddings | None = None,
retrieval_mode: RetrievalMode = RetrievalMode.DENSE,
sparse_embedding: SparseEmbeddings | None = None,
client_options: dict[str, Any] | None = None,
collection_name: str | None = None,
distance: models.Distance = models.Distance.COSINE,
content_payload_key: str = CONTENT_KEY,
metadata_payload_key: str = METADATA_KEY,
vector_name: str = VECTOR_NAME,
sparse_vector_name: str = SPARSE_VECTOR_NAME,
force_recreate: bool = False,
collection_create_options: dict[str, Any] | None = None,
vector_params: dict[str, Any] | None = None,
sparse_vector_params: dict[str, Any] | None = None,
validate_embeddings: bool = True,
validate_collection_config: bool = True
) -> QdrantVectorStore