PineconeEmbeddings()PineconeEmbeddings embedding model.
Example:
from langchain_pinecone import PineconeEmbeddings
from langchain_pinecone import PineconeVectorStore
from langchain_core.documents import Document
# Initialize embeddings with a specific model
embeddings = PineconeEmbeddings(model="multilingual-e5-large")
# Embed a single query
query_embedding = embeddings.embed_query("What is machine learning?")
# Embed multiple documents
docs = ["Document 1 content", "Document 2 content"]
doc_embeddings = embeddings.embed_documents(docs)
# Use with PineconeVectorStore
from pinecone import Pinecone
pc = Pinecone(api_key="your-api-key")
index = pc.Index("your-index-name")
vectorstore = PineconeVectorStore(
index=index,
embedding=embeddings
)
# Add documents to vector store
vectorstore.add_documents([
Document(page_content="Hello, world!"),
Document(page_content="This is a test.")
])
# Search for similar documents
results = vectorstore.similarity_search("hello", k=2)