LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-corevectorstoresutilsmaximal_marginal_relevance
    Function●Since v0.2

    maximal_marginal_relevance

    Calculate maximal marginal relevance.

    Copy
    maximal_marginal_relevance(
      query_embedding: np.ndarray,
      embedding_list: list,
      lambda_mult: float = 0.5,
      k: int = 4
    ) -> list[int]

    Parameters

    NameTypeDescription
    query_embedding*np.ndarray

    The query embedding.

    embedding_list*list

    A list of embeddings.

    lambda_multfloat
    Default:0.5

    The lambda parameter for MMR.

    kint
    Default:4

    The number of embeddings to return.

    View source on GitHub