LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-corevectorstoresbaseVectorStoresimilarity_search
    Method●Since v0.2

    similarity_search

    Return docs most similar to query.

    Copy
    similarity_search(
      self,
      query: str,
      k: int = 4,
      **kwargs: Any = {}
    ) -> list[Document]

    Parameters

    NameTypeDescription
    query*str

    Input text.

    kint
    Default:4

    Number of Document objects to return.

    **kwargsAny
    Default:{}

    Arguments to pass to the search method.

    View source on GitHub