LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-coretracerslog_stream
    Module●Since v0.1

    log_stream

    Tracer that streams run logs to a stream.

    Attributes

    attribute
    Input
    attribute
    Output
    attribute
    Run: RunTree
    attribute
    T

    Functions

    function
    dumps

    Return a JSON string representation of an object.

    function
    load

    Revive a LangChain class from a JSON object.

    Use this if you already have a parsed JSON object, eg. from json.load or orjson.loads.

    Only classes in the allowlist can be instantiated. The default allowlist includes core LangChain types (messages, prompts, documents, etc.). See langchain_core.load.mapping for the full list.

    Do not use with untrusted input

    This function instantiates Python objects and can trigger side effects during deserialization. Never call load() on data from an untrusted or unauthenticated source. See the module-level security model documentation for details and best practices.

    function
    ensure_config

    Ensure that a config is a dict with all keys present.

    Classes

    class
    BaseCallbackManager

    Base callback manager.

    class
    ChatGenerationChunk

    ChatGeneration chunk.

    ChatGeneration chunks can be concatenated with other ChatGeneration chunks.

    class
    GenerationChunk

    GenerationChunk, which can be concatenated with other Generation chunks.

    class
    RunnableConfig

    Configuration for a Runnable.

    Note

    Custom values

    The TypedDict has total=False set intentionally to:

    • Allow partial configs to be created and merged together via merge_configs
    • Support config propagation from parent to child runnables via var_child_runnable_config (a ContextVar that automatically passes config down the call stack without explicit parameter passing), where configs are merged rather than replaced
    Example
    # Parent sets tags
    chain.invoke(input, config={"tags": ["parent"]})
    # Child automatically inherits and can add:
    # ensure_config({"tags": ["child"]}) -> {"tags": ["parent", "child"]}
    class
    BaseTracer

    Base interface for tracers.

    class
    Runnable

    A unit of work that can be invoked, batched, streamed, transformed and composed.

    Key Methods

    • invoke/ainvoke: Transforms a single input into an output.
    • batch/abatch: Efficiently transforms multiple inputs into outputs.
    • stream/astream: Streams output from a single input as it's produced.
    • astream_log: Streams output and selected intermediate results from an input.

    Built-in optimizations:

    • Batch: By default, batch runs invoke() in parallel using a thread pool executor. Override to optimize batching.

    • Async: Methods with 'a' prefix are asynchronous. By default, they execute the sync counterpart using asyncio's thread pool. Override for native async.

    All methods accept an optional config argument, which can be used to configure execution, add tags and metadata for tracing and debugging etc.

    Runnables expose schematic information about their input, output and config via the input_schema property, the output_schema property and config_schema method.

    Composition

    Runnable objects can be composed together to create chains in a declarative way.

    Any chain constructed this way will automatically have sync, async, batch, and streaming support.

    The main composition primitives are RunnableSequence and RunnableParallel.

    RunnableSequence invokes a series of runnables sequentially, with one Runnable's output serving as the next's input. Construct using the | operator or by passing a list of runnables to RunnableSequence.

    RunnableParallel invokes runnables concurrently, providing the same input to each. Construct it using a dict literal within a sequence or by passing a dict to RunnableParallel.

    For example,

    from langchain_core.runnables import RunnableLambda
    
    # A RunnableSequence constructed using the `|` operator
    sequence = RunnableLambda(lambda x: x + 1) | RunnableLambda(lambda x: x * 2)
    sequence.invoke(1)  # 4
    sequence.batch([1, 2, 3])  # [4, 6, 8]
    
    # A sequence that contains a RunnableParallel constructed using a dict literal
    sequence = RunnableLambda(lambda x: x + 1) | {
        "mul_2": RunnableLambda(lambda x: x * 2),
        "mul_5": RunnableLambda(lambda x: x * 5),
    }
    sequence.invoke(1)  # {'mul_2': 4, 'mul_5': 10}

    Standard Methods

    All Runnables expose additional methods that can be used to modify their behavior (e.g., add a retry policy, add lifecycle listeners, make them configurable, etc.).

    These methods will work on any Runnable, including Runnable chains constructed by composing other Runnables. See the individual methods for details.

    For example,

    from langchain_core.runnables import RunnableLambda
    
    import random
    
    def add_one(x: int) -> int:
        return x + 1
    
    def buggy_double(y: int) -> int:
        """Buggy code that will fail 70% of the time"""
        if random.random() > 0.3:
            print('This code failed, and will probably be retried!')  # noqa: T201
            raise ValueError('Triggered buggy code')
        return y * 2
    
    sequence = (
        RunnableLambda(add_one) |
        RunnableLambda(buggy_double).with_retry( # Retry on failure
            stop_after_attempt=10,
            wait_exponential_jitter=False
        )
    )
    
    print(sequence.input_schema.model_json_schema()) # Show inferred input schema
    print(sequence.output_schema.model_json_schema()) # Show inferred output schema
    print(sequence.invoke(2)) # invoke the sequence (note the retry above!!)

    Debugging and tracing

    As the chains get longer, it can be useful to be able to see intermediate results to debug and trace the chain.

    You can set the global debug flag to True to enable debug output for all chains:

    from langchain_core.globals import set_debug
    
    set_debug(True)

    Alternatively, you can pass existing or custom callbacks to any given chain:

    from langchain_core.tracers import ConsoleCallbackHandler
    
    chain.invoke(..., config={"callbacks": [ConsoleCallbackHandler()]})

    For a UI (and much more) checkout LangSmith.

    class
    LogEntry

    A single entry in the run log.

    class
    RunState

    State of the run.

    class
    RunLogPatch

    Patch to the run log.

    class
    RunLog

    Run log.

    class
    LogStreamCallbackHandler

    Tracer that streams run logs to a stream.

    View source on GitHub