LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-coretracersevent_stream
    Module●Since v0.2

    event_stream

    Internal tracer to power the event stream API.

    Attributes

    attribute
    Input
    attribute
    Output
    attribute
    logger
    attribute
    T

    Functions

    function
    ensure_config

    Ensure that a config is a dict with all keys present.

    function
    uuid7

    Generate a UUID from a Unix timestamp in nanoseconds and random bits.

    UUIDv7 objects feature monotonicity within a millisecond.

    Classes

    class
    AsyncCallbackHandler

    Base async callback handler.

    class
    BaseCallbackManager

    Base callback manager.

    class
    AIMessageChunk

    Message chunk from an AI (yielded when streaming).

    class
    BaseMessage

    Base abstract message class.

    Messages are the inputs and outputs of a chat model.

    Examples include HumanMessage, AIMessage, and SystemMessage.

    class
    BaseMessageChunk

    Message chunk, which can be concatenated with other Message chunks.

    class
    ChatGenerationChunk

    ChatGeneration chunk.

    ChatGeneration chunks can be concatenated with other ChatGeneration chunks.

    class
    GenerationChunk

    GenerationChunk, which can be concatenated with other Generation chunks.

    class
    LLMResult

    A container for results of an LLM call.

    Both chat models and LLMs generate an LLMResult object. This object contains the generated outputs and any additional information that the model provider wants to return.

    class
    CustomStreamEvent

    Custom stream event created by the user.

    class
    EventData

    Data associated with a streaming event.

    class
    StandardStreamEvent

    A standard stream event that follows LangChain convention for event data.

    class
    LogStreamCallbackHandler

    Tracer that streams run logs to a stream.

    class
    RunLog

    Run log.

    class
    aclosing

    Async context manager to wrap an AsyncGenerator that has a aclose() method.

    Code like this:

    async with aclosing(<module>.fetch(<arguments>)) as agen:
        <block>

    ...is equivalent to this:

    agen = <module>.fetch(<arguments>)
    try:
        <block>
    finally:
        await agen.aclose()
    
    class
    Document

    Class for storing a piece of text and associated metadata.

    Note

    Document is for retrieval workflows, not chat I/O. For sending text to an LLM in a conversation, use message types from langchain.messages.

    class
    Runnable

    A unit of work that can be invoked, batched, streamed, transformed and composed.

    Key Methods

    • invoke/ainvoke: Transforms a single input into an output.
    • batch/abatch: Efficiently transforms multiple inputs into outputs.
    • stream/astream: Streams output from a single input as it's produced.
    • astream_log: Streams output and selected intermediate results from an input.

    Built-in optimizations:

    • Batch: By default, batch runs invoke() in parallel using a thread pool executor. Override to optimize batching.

    • Async: Methods with 'a' prefix are asynchronous. By default, they execute the sync counterpart using asyncio's thread pool. Override for native async.

    All methods accept an optional config argument, which can be used to configure execution, add tags and metadata for tracing and debugging etc.

    Runnables expose schematic information about their input, output and config via the input_schema property, the output_schema property and config_schema method.

    Composition

    Runnable objects can be composed together to create chains in a declarative way.

    Any chain constructed this way will automatically have sync, async, batch, and streaming support.

    The main composition primitives are RunnableSequence and RunnableParallel.

    RunnableSequence invokes a series of runnables sequentially, with one Runnable's output serving as the next's input. Construct using the | operator or by passing a list of runnables to RunnableSequence.

    RunnableParallel invokes runnables concurrently, providing the same input to each. Construct it using a dict literal within a sequence or by passing a dict to RunnableParallel.

    For example,

    from langchain_core.runnables import RunnableLambda
    
    # A RunnableSequence constructed using the `|` operator
    sequence = RunnableLambda(lambda x: x + 1) | RunnableLambda(lambda x: x * 2)
    sequence.invoke(1)  # 4
    sequence.batch([1, 2, 3])  # [4, 6, 8]
    
    # A sequence that contains a RunnableParallel constructed using a dict literal
    sequence = RunnableLambda(lambda x: x + 1) | {
        "mul_2": RunnableLambda(lambda x: x * 2),
        "mul_5": RunnableLambda(lambda x: x * 5),
    }
    sequence.invoke(1)  # {'mul_2': 4, 'mul_5': 10}

    Standard Methods

    All Runnables expose additional methods that can be used to modify their behavior (e.g., add a retry policy, add lifecycle listeners, make them configurable, etc.).

    These methods will work on any Runnable, including Runnable chains constructed by composing other Runnables. See the individual methods for details.

    For example,

    from langchain_core.runnables import RunnableLambda
    
    import random
    
    def add_one(x: int) -> int:
        return x + 1
    
    def buggy_double(y: int) -> int:
        """Buggy code that will fail 70% of the time"""
        if random.random() > 0.3:
            print('This code failed, and will probably be retried!')  # noqa: T201
            raise ValueError('Triggered buggy code')
        return y * 2
    
    sequence = (
        RunnableLambda(add_one) |
        RunnableLambda(buggy_double).with_retry( # Retry on failure
            stop_after_attempt=10,
            wait_exponential_jitter=False
        )
    )
    
    print(sequence.input_schema.model_json_schema()) # Show inferred input schema
    print(sequence.output_schema.model_json_schema()) # Show inferred output schema
    print(sequence.invoke(2)) # invoke the sequence (note the retry above!!)

    Debugging and tracing

    As the chains get longer, it can be useful to be able to see intermediate results to debug and trace the chain.

    You can set the global debug flag to True to enable debug output for all chains:

    from langchain_core.globals import set_debug
    
    set_debug(True)

    Alternatively, you can pass existing or custom callbacks to any given chain:

    from langchain_core.tracers import ConsoleCallbackHandler
    
    chain.invoke(..., config={"callbacks": [ConsoleCallbackHandler()]})

    For a UI (and much more) checkout LangSmith.

    class
    RunnableConfig

    Configuration for a Runnable.

    Note

    Custom values

    The TypedDict has total=False set intentionally to:

    • Allow partial configs to be created and merged together via merge_configs
    • Support config propagation from parent to child runnables via var_child_runnable_config (a ContextVar that automatically passes config down the call stack without explicit parameter passing), where configs are merged rather than replaced
    Example
    # Parent sets tags
    chain.invoke(input, config={"tags": ["parent"]})
    # Child automatically inherits and can add:
    # ensure_config({"tags": ["child"]}) -> {"tags": ["parent", "child"]}
    class
    LogEntry

    A single entry in the run log.

    class
    RunInfo

    Information about a run.

    This is used to keep track of the metadata associated with a run.

    Type Aliases

    typeAlias
    StreamEvent
    View source on GitHub