LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-coretoolssimple
    Module●Since v0.2

    simple

    Tool that takes in function or coroutine directly.

    Functions

    function
    run_in_executor

    Run a function in an executor.

    Classes

    class
    AsyncCallbackManagerForToolRun

    Async callback manager for tool run.

    class
    CallbackManagerForToolRun

    Callback manager for tool run.

    class
    RunnableConfig

    Configuration for a Runnable.

    Note

    Custom values

    The TypedDict has total=False set intentionally to:

    • Allow partial configs to be created and merged together via merge_configs
    • Support config propagation from parent to child runnables via var_child_runnable_config (a ContextVar that automatically passes config down the call stack without explicit parameter passing), where configs are merged rather than replaced
    Example
    # Parent sets tags
    chain.invoke(input, config={"tags": ["parent"]})
    # Child automatically inherits and can add:
    # ensure_config({"tags": ["child"]}) -> {"tags": ["parent", "child"]}
    class
    BaseTool

    Base class for all LangChain tools.

    This abstract class defines the interface that all LangChain tools must implement.

    Tools are components that can be called by agents to perform specific actions.

    class
    ToolException

    Exception thrown when a tool execution error occurs.

    This exception allows tools to signal errors without stopping the agent.

    The error is handled according to the tool's handle_tool_error setting, and the result is returned as an observation to the agent.

    class
    ToolCall

    Represents an AI's request to call a tool.

    class
    Tool

    Tool that takes in function or coroutine directly.

    Type Aliases

    typeAlias
    ArgsSchema
    View source on GitHub