LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-corerunnablesbaseRunnableEach
    Class●Since v0.1

    RunnableEach

    RunnableEach class.

    Runnable that calls another Runnable for each element of the input sequence.

    It allows you to call multiple inputs with the bounded Runnable.

    RunnableEach makes it easy to run multiple inputs for the Runnable. In the below example, we associate and run three inputs with a Runnable:

    from langchain_core.runnables.base import RunnableEach
    from langchain_openai import ChatOpenAI
    from langchain_core.prompts import ChatPromptTemplate
    from langchain_core.output_parsers import StrOutputParser
    prompt = ChatPromptTemplate.from_template("Tell me a short joke about
    {topic}")
    model = ChatOpenAI()
    output_parser = StrOutputParser()
    runnable = prompt | model | output_parser
    runnable_each = RunnableEach(bound=runnable)
    output = runnable_each.invoke([{'topic':'Computer Science'},
                                {'topic':'Art'},
                                {'topic':'Biology'}])
    print(output)  # noqa: T201
    
    Copy
    RunnableEach(
        self,
        *args: Any = (),
        **kwargs: Any = {},
    )

    Bases

    RunnableEachBase[Input, Output]

    Methods

    method
    get_name
    method
    bind
    method
    with_config
    method
    with_listeners

    Bind lifecycle listeners to a Runnable, returning a new Runnable.

    The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

    method
    with_alisteners

    Bind async lifecycle listeners to a Runnable.

    Returns a new Runnable.

    The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run.

    Inherited fromRunnableEachBase

    Attributes

    Abound: Runnable[Input, Output]Amodel_configAInputType: AnyAOutputType: AnyAconfig_specs: list[ConfigurableFieldSpec]

    Methods

    Mget_input_schemaMget_output_schemaMget_graphMis_lc_serializable
    —

    Return True as this class is serializable.

    Mget_lc_namespace
    —

    Get the namespace of the LangChain object.

    Minvoke
    —

    Invoke the retriever to get relevant documents.

    Mainvoke
    —

    Asynchronously invoke the retriever to get relevant documents.

    Mastream_events
    —

    Generate a stream of events.

    Inherited fromRunnableSerializable

    Attributes

    Aname: str
    —

    The name of the function.

    Amodel_config

    Methods

    Mto_json
    —

    Convert the graph to a JSON-serializable format.

    Mconfigurable_fieldsMconfigurable_alternatives
    —

    Configure alternatives for Runnable objects that can be set at runtime.

    Inherited fromSerializable

    Attributes

    Alc_secrets: dict[str, str]
    —

    A map of constructor argument names to secret ids.

    Alc_attributes: dict
    —

    List of attribute names that should be included in the serialized kwargs.

    Amodel_config

    Methods

    Mis_lc_serializable
    —

    Return True as this class is serializable.

    Mget_lc_namespace
    —

    Get the namespace of the LangChain object.

    Mlc_id
    —

    Return a unique identifier for this class for serialization purposes.

    Mto_json
    —

    Convert the graph to a JSON-serializable format.

    Mto_json_not_implemented
    —

    Serialize a "not implemented" object.

    Inherited fromRunnable

    Attributes

    Aname: str
    —

    The name of the function.

    AInputType: AnyAOutputType: AnyAinput_schema: type[BaseModel]
    —

    The type of input this Runnable accepts specified as a Pydantic model.

    Aoutput_schema: type[BaseModel]
    —

    Output schema.

    Aconfig_specs: list[ConfigurableFieldSpec]

    Methods

    Mget_input_schemaMget_input_jsonschema
    —

    Get a JSON schema that represents the input to the Runnable.

    Mget_output_schemaMget_output_jsonschema
    —

    Get a JSON schema that represents the output of the Runnable.

    Mconfig_schema
    —

    The type of config this Runnable accepts specified as a Pydantic model.

    Mget_config_jsonschema
    —

    Get a JSON schema that represents the config of the Runnable.

    Mget_graphMget_prompts
    —

    Return a list of prompts used by this Runnable.

    Mpipe
    —

    Pipe Runnable objects.

    Mpick
    —

    Pick keys from the output dict of this Runnable.

    Massign
    —

    Merge the Dict input with the output produced by the mapping argument.

    Minvoke
    —

    Invoke the retriever to get relevant documents.

    Mainvoke
    —

    Asynchronously invoke the retriever to get relevant documents.

    MbatchMbatch_as_completed
    —

    Run invoke in parallel on a list of inputs.

    MabatchMabatch_as_completed
    —

    Run ainvoke in parallel on a list of inputs.

    MstreamMastreamMastream_log
    —

    Stream all output from a Runnable, as reported to the callback system.

    Mastream_events
    —

    Generate a stream of events.

    MtransformMatransformMwith_types
    —

    Bind input and output types to a Runnable, returning a new Runnable.

    Mwith_retry
    —

    Create a new Runnable that retries the original Runnable on exceptions.

    Mmap
    —

    Map a function to multiple iterables.

    Mwith_fallbacks
    —

    Add fallbacks to a Runnable, returning a new Runnable.

    Mas_tool
    —

    Create a BaseTool from a Runnable.

    View source on GitHub