LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-corepromptsfew_shot_with_templatesFewShotPromptWithTemplates
    Class●Since v0.1

    FewShotPromptWithTemplates

    Prompt template that contains few shot examples.

    Copy
    FewShotPromptWithTemplates(
      self,
      *args: Any = (),
      **kwargs: Any = {}
    )

    Bases

    StringPromptTemplate

    Attributes

    attribute
    examples: list[dict] | None

    Examples to format into the prompt.

    Either this or example_selector should be provided.

    attribute
    example_selector: BaseExampleSelector | None

    ExampleSelector to choose the examples to format into the prompt.

    Either this or examples should be provided.

    attribute
    example_prompt: PromptTemplate

    PromptTemplate used to format an individual example.

    attribute
    suffix: StringPromptTemplate

    A PromptTemplate to put after the examples.

    attribute
    example_separator: str

    String separator used to join the prefix, the examples, and suffix.

    attribute
    prefix: StringPromptTemplate | None

    A PromptTemplate to put before the examples.

    attribute
    template_format: PromptTemplateFormat

    The format of the prompt template.

    Options are: 'f-string', 'jinja2', 'mustache'.

    attribute
    validate_template: bool

    Whether or not to try validating the template.

    attribute
    model_config

    Methods

    method
    get_lc_namespace

    Get the namespace of the LangChain object.

    method
    check_examples_and_selector

    Check that one and only one of examples/example_selector are provided.

    method
    template_is_valid

    Check that prefix, suffix, and input variables are consistent.

    method
    format

    Format the prompt with the inputs.

    method
    aformat

    Async format the prompt with the inputs.

    method
    save

    Save the prompt to a file.

    Inherited fromStringPromptTemplate

    Methods

    Mformat_prompt
    —

    Format prompt.

    Maformat_prompt
    —

    Async format prompt.

    Mpretty_repr
    —

    Return a pretty representation of the message for display.

    Mpretty_print
    —

    Print a pretty representation of the message.

    Inherited fromBasePromptTemplate

    Attributes

    Ainput_variables: list[str]
    —

    Template input variables.

    Aoptional_variables: list[str]
    —

    A list of the names of the variables for placeholder or MessagePlaceholder that

    Ainput_types: builtins.dict[str, Any]
    —

    A dictionary of the types of the variables the prompt template expects.

    Aoutput_parser: BaseOutputParser | None
    —

    How to parse the output of calling an LLM on this formatted prompt.

    Apartial_variables: Mapping[str, Any]
    —

    A dictionary of the partial variables the prompt template carries.

    Ametadata: dict[str, Any] | None
    —

    Optional metadata associated with the retriever.

    Atags: list[str] | None
    —

    Optional list of tags associated with the retriever.

    AOutputType: Any

    Methods

    Mvalidate_variable_names
    —

    Validate variable names do not include restricted names.

    Mis_lc_serializable
    —

    Return True as this class is serializable.

    Mget_input_schemaMinvoke
    —

    Invoke the retriever to get relevant documents.

    Mainvoke
    —

    Asynchronously invoke the retriever to get relevant documents.

    Mformat_prompt
    —

    Format prompt.

    Maformat_prompt
    —

    Async format prompt.

    Mpartial
    —

    Get a new ChatPromptTemplate with some input variables already filled in.

    Mdict
    —

    Return dictionary representation of output parser.

    Inherited fromRunnableSerializable

    Attributes

    Aname: str
    —

    The name of the function.

    Methods

    Mto_json
    —

    Convert the graph to a JSON-serializable format.

    Mconfigurable_fieldsMconfigurable_alternatives
    —

    Configure alternatives for Runnable objects that can be set at runtime.

    Inherited fromSerializable

    Attributes

    Alc_secrets: dict[str, str]
    —

    A map of constructor argument names to secret ids.

    Alc_attributes: dict
    —

    List of attribute names that should be included in the serialized kwargs.

    Methods

    Mis_lc_serializable
    —

    Return True as this class is serializable.

    Mlc_id
    —

    Return a unique identifier for this class for serialization purposes.

    Mto_json
    —

    Convert the graph to a JSON-serializable format.

    Mto_json_not_implemented
    —

    Serialize a "not implemented" object.

    Inherited fromRunnable

    Attributes

    Aname: str
    —

    The name of the function.

    AInputType: AnyAOutputType: AnyAinput_schema: type[BaseModel]
    —

    The type of input this Runnable accepts specified as a Pydantic model.

    Aoutput_schema: type[BaseModel]
    —

    Output schema.

    Aconfig_specs: list[ConfigurableFieldSpec]

    Methods

    Mget_nameMget_input_schemaMget_input_jsonschema
    —

    Get a JSON schema that represents the input to the Runnable.

    Mget_output_schemaMget_output_jsonschema
    —

    Get a JSON schema that represents the output of the Runnable.

    Mconfig_schema
    —

    The type of config this Runnable accepts specified as a Pydantic model.

    Mget_config_jsonschema
    —

    Get a JSON schema that represents the config of the Runnable.

    Mget_graphMget_prompts
    —

    Return a list of prompts used by this Runnable.

    Mpipe
    —

    Pipe Runnable objects.

    Mpick
    —

    Pick keys from the output dict of this Runnable.

    Massign
    —

    Merge the Dict input with the output produced by the mapping argument.

    Minvoke
    —

    Invoke the retriever to get relevant documents.

    Mainvoke
    —

    Asynchronously invoke the retriever to get relevant documents.

    MbatchMbatch_as_completed
    —

    Run invoke in parallel on a list of inputs.

    MabatchMabatch_as_completed
    —

    Run ainvoke in parallel on a list of inputs.

    MstreamMastreamMastream_log
    —

    Stream all output from a Runnable, as reported to the callback system.

    Mastream_events
    —

    Generate a stream of events.

    MtransformMatransformMbind
    —

    Bind arguments to a Runnable, returning a new Runnable.

    Mwith_configMwith_listeners
    —

    Bind lifecycle listeners to a Runnable, returning a new Runnable.

    Mwith_alisteners
    —

    Bind async lifecycle listeners to a Runnable.

    Mwith_types
    —

    Bind input and output types to a Runnable, returning a new Runnable.

    Mwith_retry
    —

    Create a new Runnable that retries the original Runnable on exceptions.

    Mmap
    —

    Map a function to multiple iterables.

    Mwith_fallbacks
    —

    Add fallbacks to a Runnable, returning a new Runnable.

    Mas_tool
    —

    Create a BaseTool from a Runnable.

    View source on GitHub