LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-coreoutput_parsersxmlXMLOutputParser
    Class●Since v0.1

    XMLOutputParser

    Copy
    XMLOutputParser(
        self,
        *args: Any = (),
        **kwargs: Any = {},
    )

    Bases

    BaseTransformOutputParser

    Attributes

    Methods

    Inherited fromBaseTransformOutputParser

    Methods

    MtransformMatransform

    Inherited fromBaseOutputParser

    Attributes

    AInputType: Any
    View source on GitHub
    AOutputType: Any

    Methods

    Minvoke
    —

    Invoke the retriever to get relevant documents.

    Mainvoke
    —

    Asynchronously invoke the retriever to get relevant documents.

    Mparse_result
    —

    Parse the result of an LLM call to a JSON object.

    Maparse_result
    —

    Parse a list of candidate model Generation objects into a specific format.

    Maparse
    —

    Async parse a single string model output into some structure.

    Mparse_with_prompt
    —

    Parse the output of an LLM call with the input prompt for context.

    Mdict
    —

    Return dictionary representation of output parser.

    Inherited fromBaseLLMOutputParser

    Methods

    Mparse_result
    —

    Parse the result of an LLM call to a JSON object.

    Maparse_result
    —

    Parse a list of candidate model Generation objects into a specific format.

    Inherited fromRunnableSerializable

    Attributes

    Aname: str
    —

    The name of the function.

    Amodel_config

    Methods

    Mto_json
    —

    Convert the graph to a JSON-serializable format.

    Mconfigurable_fieldsMconfigurable_alternatives
    —

    Configure alternatives for Runnable objects that can be set at runtime.

    Inherited fromSerializable

    Attributes

    Alc_secrets: dict[str, str]
    —

    A map of constructor argument names to secret ids.

    Alc_attributes: dict
    —

    List of attribute names that should be included in the serialized kwargs.

    Amodel_config

    Methods

    Mis_lc_serializable
    —

    Return True as this class is serializable.

    Mget_lc_namespace
    —

    Get the namespace of the LangChain object.

    Mlc_id
    —

    Return a unique identifier for this class for serialization purposes.

    Mto_json
    —

    Convert the graph to a JSON-serializable format.

    Mto_json_not_implemented
    —

    Serialize a "not implemented" object.

    Inherited fromRunnable

    Attributes

    Aname: str
    —

    The name of the function.

    AInputType: AnyAOutputType: AnyAinput_schema: type[BaseModel]
    —

    The type of input this Runnable accepts specified as a Pydantic model.

    Aoutput_schema: type[BaseModel]
    —

    Output schema.

    Aconfig_specs: list[ConfigurableFieldSpec]

    Methods

    Mget_nameMget_input_schemaMget_input_jsonschema
    —

    Get a JSON schema that represents the input to the Runnable.

    Mget_output_schemaMget_output_jsonschema
    —
    attribute
    tags: list[str] | None

    Tags to tell the LLM to expect in the XML output.

    Note this may not be perfect depending on the LLM implementation.
    
    For example, with `tags=["foo", "bar", "baz"]`:
    
    1. A well-formatted XML instance:
        `'<foo>
    
    '`
    2. A badly-formatted XML instance (missing closing tag for 'bar'):
        `'<foo>
    
    '`
    3. A badly-formatted XML instance (unexpected 'tag' element):
        `'<foo>
    
    '`
    attribute
    encoding_matcher: re.Pattern
    attribute
    parser: Literal['defusedxml', 'xml']

    Parser to use for XML parsing.

    Can be either 'defusedxml' or 'xml'.

    • 'defusedxml' is the default parser and is used to prevent XML vulnerabilities present in some distributions of Python's standard library xml. defusedxml is a wrapper around the standard library parser that sets up the parser with secure defaults.
    • 'xml' is the standard library parser.
    Warning

    Use xml only if you are sure that your distribution of the standard library is not vulnerable to XML vulnerabilities.

    Review the following resources for more information:

    • https://docs.python.org/3/library/xml.html#xml-vulnerabilities
    • https://github.com/tiran/defusedxml

    The standard library relies on libexpat for parsing XML.

    method
    get_format_instructions

    Return the format instructions for the XML output.

    method
    parse

    Parse the output of an LLM call.

    Parse an output using xml format.

    Returns a dictionary of tags.

    Get a JSON schema that represents the output of the Runnable.

    Mconfig_schema
    —

    The type of config this Runnable accepts specified as a Pydantic model.

    Mget_config_jsonschema
    —

    Get a JSON schema that represents the config of the Runnable.

    Mget_graph
    Mget_prompts
    —

    Return a list of prompts used by this Runnable.

    Mpipe
    —

    Pipe Runnable objects.

    Mpick
    —

    Pick keys from the output dict of this Runnable.

    Massign
    —

    Merge the Dict input with the output produced by the mapping argument.

    Minvoke
    —

    Invoke the retriever to get relevant documents.

    Mainvoke
    —

    Asynchronously invoke the retriever to get relevant documents.

    Mbatch
    Mbatch_as_completed
    —

    Run invoke in parallel on a list of inputs.

    Mabatch
    Mabatch_as_completed
    —

    Run ainvoke in parallel on a list of inputs.

    Mstream
    Mastream
    Mastream_log
    —

    Stream all output from a Runnable, as reported to the callback system.

    Mastream_events
    —

    Generate a stream of events.

    Mtransform
    Matransform
    Mbind
    —

    Bind arguments to a Runnable, returning a new Runnable.

    Mwith_config
    Mwith_listeners
    —

    Bind lifecycle listeners to a Runnable, returning a new Runnable.

    Mwith_alisteners
    —

    Bind async lifecycle listeners to a Runnable.

    Mwith_types
    —

    Bind input and output types to a Runnable, returning a new Runnable.

    Mwith_retry
    —

    Create a new Runnable that retries the original Runnable on exceptions.

    Mmap
    —

    Map a function to multiple iterables.

    Mwith_fallbacks
    —

    Add fallbacks to a Runnable, returning a new Runnable.

    Mas_tool
    —

    Create a BaseTool from a Runnable.