LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-corelanguage_modelsfake_chat_modelsFakeChatModel
    Class●Since v0.1

    FakeChatModel

    Fake Chat Model wrapper for testing purposes.

    Copy
    FakeChatModel(
        self,
        *args: Any = (),
        **kwargs: Any = {},
    )

    Bases

    SimpleChatModel

    Inherited fromBaseChatModel

    Attributes

    Arate_limiter: BaseRateLimiter | None
    —

    An optional rate limiter to use for limiting the number of requests.

    Adisable_streaming: bool | Literal['tool_calling']
    —

    Whether to disable streaming for this model.

    Aoutput_version: str | None
    —

    Version of AIMessage output format to store in message content.

    Aprofile: ModelProfile | None
    —

    Profile detailing model capabilities.

    Amodel_configAOutputType: Any
    —

    Get the output type for this Runnable.

    Methods

    MinvokeMainvokeMstreamMastreamMgenerate
    —

    Pass a sequence of prompts to the model and return model generations.

    Magenerate
    —

    Asynchronously pass a sequence of prompts to a model and return generations.

    Mgenerate_promptMagenerate_promptMdict
    —

    Return a dictionary of the LLM.

    Mbind_tools
    —

    Bind tools to the model.

    Mwith_structured_output
    —

    Model wrapper that returns outputs formatted to match the given schema.

    Inherited fromBaseLanguageModel

    Attributes

    Acache: BaseCache | bool | None
    —

    Whether to cache the response.

    Averbose: bool
    —

    Whether to print out response text.

    Acallbacks: Callbacks
    —

    Callbacks to add to the run trace.

    Atags: list[str] | None
    —

    Tags to add to the run trace.

    Ametadata: dict[str, Any] | None
    —

    Metadata to add to the run trace.

    Acustom_get_token_ids: Callable[[str], list[int]] | None
    —

    Optional encoder to use for counting tokens.

    Amodel_configAInputType: TypeAlias
    —

    Get the input type for this Runnable.

    Methods

    Mset_verbose
    —

    If verbose is None, set it.

    Mgenerate_prompt
    —

    Pass a sequence of prompts to the model and return model generations.

    Magenerate_prompt
    —

    Asynchronously pass a sequence of prompts and return model generations.

    Mwith_structured_output
    —

    Not implemented on this class.

    Mget_token_ids
    —

    Return the ordered IDs of the tokens in a text.

    Mget_num_tokens
    —

    Get the number of tokens present in the text.

    Mget_num_tokens_from_messages
    —

    Get the number of tokens in the messages.

    Inherited fromRunnableSerializable

    Attributes

    Aname: str | None
    —

    The name of the Runnable.

    Amodel_config

    Methods

    Mto_json
    —

    Serialize the Runnable to JSON.

    Mconfigurable_fields
    —

    Configure particular Runnable fields at runtime.

    Mconfigurable_alternatives
    —

    Configure alternatives for Runnable objects that can be set at runtime.

    Inherited fromSerializable

    Attributes

    Alc_secrets: dict[str, str]
    —

    A map of constructor argument names to secret ids.

    Alc_attributes: dict
    —

    List of attribute names that should be included in the serialized kwargs.

    Amodel_config

    Methods

    Mis_lc_serializable
    —

    Is this class serializable?

    Mget_lc_namespace
    —

    Get the namespace of the LangChain object.

    Mlc_id
    —

    Return a unique identifier for this class for serialization purposes.

    Mto_json
    —

    Serialize the object to JSON.

    Mto_json_not_implemented
    —

    Serialize a "not implemented" object.

    Inherited fromRunnable

    Attributes

    Aname: str | None
    —

    The name of the Runnable. Used for debugging and tracing.

    AInputType: type[Input]
    —

    Input type.

    AOutputType: type[Output]
    —

    Output Type.

    Ainput_schema: type[BaseModel]
    —

    The type of input this Runnable accepts specified as a Pydantic model.

    Aoutput_schema: type[BaseModel]
    —

    Output schema.

    Aconfig_specs: list[ConfigurableFieldSpec]
    —

    List configurable fields for this Runnable.

    Methods

    Mget_name
    —

    Get the name of the Runnable.

    Mget_input_schema
    —

    Get a Pydantic model that can be used to validate input to the Runnable.

    Mget_input_jsonschema
    —

    Get a JSON schema that represents the input to the Runnable.

    Mget_output_schema
    —

    Get a Pydantic model that can be used to validate output to the Runnable.

    Mget_output_jsonschema
    —

    Get a JSON schema that represents the output of the Runnable.

    Mconfig_schema
    —

    The type of config this Runnable accepts specified as a Pydantic model.

    Mget_config_jsonschema
    —

    Get a JSON schema that represents the config of the Runnable.

    Mget_graph
    —

    Return a graph representation of this Runnable.

    Mget_prompts
    —

    Return a list of prompts used by this Runnable.

    Mpipe
    —

    Pipe Runnable objects.

    Mpick
    —

    Pick keys from the output dict of this Runnable.

    Massign
    —

    Assigns new fields to the dict output of this Runnable.

    Minvoke
    —

    Transform a single input into an output.

    Mainvoke
    —

    Transform a single input into an output.

    Mbatch
    —

    Default implementation runs invoke in parallel using a thread pool executor.

    Mbatch_as_completed
    —

    Run invoke in parallel on a list of inputs.

    Mabatch
    —

    Default implementation runs ainvoke in parallel using asyncio.gather.

    Mabatch_as_completed
    —

    Run ainvoke in parallel on a list of inputs.

    Mstream
    —

    Default implementation of stream, which calls invoke.

    Mastream
    —

    Default implementation of astream, which calls ainvoke.

    Mastream_log
    —

    Stream all output from a Runnable, as reported to the callback system.

    Mastream_events
    —

    Generate a stream of events.

    Mtransform
    —

    Transform inputs to outputs.

    Matransform
    —

    Transform inputs to outputs.

    Mbind
    —

    Bind arguments to a Runnable, returning a new Runnable.

    Mwith_config
    —

    Bind config to a Runnable, returning a new Runnable.

    Mwith_listeners
    —

    Bind lifecycle listeners to a Runnable, returning a new Runnable.

    Mwith_alisteners
    —

    Bind async lifecycle listeners to a Runnable.

    Mwith_types
    —

    Bind input and output types to a Runnable, returning a new Runnable.

    Mwith_retry
    —

    Create a new Runnable that retries the original Runnable on exceptions.

    Mmap
    —

    Return a new Runnable that maps a list of inputs to a list of outputs.

    Mwith_fallbacks
    —

    Add fallbacks to a Runnable, returning a new Runnable.

    Mas_tool
    —

    Create a BaseTool from a Runnable.

    View source on GitHub