LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-coreexample_selectorssemantic_similarityMaxMarginalRelevanceExampleSelector
    Class●Since v0.1

    MaxMarginalRelevanceExampleSelector

    Copy
    MaxMarginalRelevanceExampleSelector()

    Bases

    _VectorStoreExampleSelector

    Attributes

    Methods

    View source on GitHub
    attribute
    fetch_k: int

    Number of examples to fetch to rerank.

    method
    select_examples

    Select examples based on Max Marginal Relevance.

    method
    aselect_examples

    Asynchronously select examples based on Max Marginal Relevance.

    method
    from_examples

    Create k-shot example selector using example list and embeddings.

    Reshuffles examples dynamically based on Max Marginal Relevance.

    method
    afrom_examples

    Create k-shot example selector using example list and embeddings.

    Reshuffles examples dynamically based on Max Marginal Relevance.

    Select examples based on Max Marginal Relevance.

    This was shown to improve performance in this paper: https://arxiv.org/pdf/2211.13892.pdf