LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
    • Overview
    • Caches
    • Callbacks
    • Documents
    • Document loaders
    • Embeddings
    • Exceptions
    • Language models
    • Serialization
    • Output parsers
    • Prompts
    • Rate limiters
    • Retrievers
    • Runnables
    • Utilities
    • Vector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    OverviewCachesCallbacksDocumentsDocument loadersEmbeddingsExceptionsLanguage modelsSerializationOutput parsersPromptsRate limitersRetrieversRunnablesUtilitiesVector stores
    MCP Adapters
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-corecachesBaseCachealookup
    Method●Since v0.1

    alookup

    Async look up based on prompt and llm_string.

    A cache implementation is expected to generate a key from the 2-tuple of prompt and llm_string (e.g., by concatenating them with a delimiter).

    Copy
    alookup(
      self,
      prompt: str,
      llm_string: str
    ) -> RETURN_VAL_TYPE | None

    Parameters

    NameTypeDescription
    prompt*str

    A string representation of the prompt.

    In the case of a chat model, the prompt is a non-trivial serialization of the prompt into the language model.

    llm_string*str

    A string representation of the LLM configuration.

    This is used to capture the invocation parameters of the LLM (e.g., model name, temperature, stop tokens, max tokens, etc.).

    These invocation parameters are serialized into a string representation.

    View source on GitHub