SparkLLM()iFlyTek Spark completion model integration.
Setup:
To use, you should set environment variables IFLYTEK_SPARK_APP_ID,
IFLYTEK_SPARK_API_KEY and IFLYTEK_SPARK_API_SECRET.
.. code-block:: bash
export IFLYTEK_SPARK_APP_ID="your-app-id"
export IFLYTEK_SPARK_API_KEY="your-api-key"
export IFLYTEK_SPARK_API_SECRET="your-api-secret"
Key init args — completion params: model: Optional[str] Name of IFLYTEK SPARK model to use. temperature: Optional[float] Sampling temperature. top_k: Optional[float] What search sampling control to use. streaming: Optional[bool] Whether to stream the results or not.
Key init args — client params:
app_id: Optional[str]
IFLYTEK SPARK API KEY. Automatically inferred from env var IFLYTEK_SPARK_APP_ID if not provided.
api_key: Optional[str]
IFLYTEK SPARK API KEY. If not passed in will be read from env var IFLYTEK_SPARK_API_KEY.
api_secret: Optional[str]
IFLYTEK SPARK API SECRET. If not passed in will be read from env var IFLYTEK_SPARK_API_SECRET.
api_url: Optional[str]
Base URL for API requests.
timeout: Optional[int]
Timeout for requests.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_community.llms import SparkLLM
llm = SparkLLM( app_id="your-app-id", api_key="your-api_key", api_secret="your-api-secret", # model='Spark4.0 Ultra', # temperature=..., # other params... )
Invoke:
.. code-block:: python
input_text = "用50个字左右阐述,生命的意义在于"
llm.invoke(input_text)
.. code-block:: python
'生命的意义在于实现自我价值,追求内心的平静与快乐,同时为他人和社会带来正面影响。'
Stream:
.. code-block:: python
for chunk in llm.stream(input_text):
print(chunk)
.. code-block:: python
生命 | 的意义在于 | 不断探索和 | 实现个人潜能,通过 | 学习 | 、成长和对社会 | 的贡献,追求内心的满足和幸福。
Async:
.. code-block:: python
await llm.ainvoke(input_text)
# stream:
# async for chunk in llm.astream(input_text):
# print(chunk)
# batch:
# await llm.abatch([input_text])
.. code-block:: python
'生命的意义在于实现自我价值,追求内心的平静与快乐,同时为他人和社会带来正面影响。'