Create a DocumentTransformer that uses an OpenAI function chain to automatically
tag documents with metadata based on their content and an input schema.
Args:
metadata_schema: Either a dictionary or pydantic.BaseModel class. If a dictionary
is passed in, it's assumed to already be a valid JsonSchema.
For best results, pydantic.BaseModels should have docstrings describing what
the schema represents and descriptions for the parameters.
llm: Language model to use, assumed to support the OpenAI function-calling API.
Defaults to use "gpt-3.5-turbo-0613"
prompt: BasePromptTemplate to pass to the model.
Returns:
An LLMChain that will pass the given function to the model.
Example:
.. code-block:: python
from langchain_openai import ChatOpenAI
from langchain_community.document_transformers import create_metadata_tagger
from langchain_core.documents import Document
schema = {
"properties": {
"movie_title": { "type": "string" },
"critic": { "type": "string" },
"tone": {
"type": "string",
"enum": ["positive", "negative"]
},
"rating": {
"type": "integer",
"description": "The number of stars the critic rated the movie"
}
},
"required": ["movie_title", "critic", "tone"]
}
# Must be an OpenAI model that supports functions
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
document_transformer = create_metadata_tagger(schema, llm)
original_documents = [
Document(page_content="Review of The Bee Movie
By Roger Ebert
This is the greatest movie ever made. 4 out of 5 stars."),
Document(page_content="Review of The Godfather
By Anonymous
This movie was super boring. 1 out of 5 stars.", metadata={"reliable": False}),
]
enhanced_documents = document_transformer.transform_documents(original_documents)