LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicstorageencoder_backed
    Module●Since v1.0

    encoder_backed

    Attributes

    attribute
    K
    attribute
    V

    Classes

    class
    EncoderBackedStore

    Wraps a store with key and value encoders/decoders.

    Examples that uses JSON for encoding/decoding:

    import json
    
    def key_encoder(key: int) -> str:
        return json.dumps(key)
    
    def value_serializer(value: float) -> str:
        return json.dumps(value)
    
    def value_deserializer(serialized_value: str) -> float:
        return json.loads(serialized_value)
    
    # Create an instance of the abstract store
    abstract_store = MyCustomStore()
    
    # Create an instance of the encoder-backed store
    store = EncoderBackedStore(
        store=abstract_store,
        key_encoder=key_encoder,
        value_serializer=value_serializer,
        value_deserializer=value_deserializer,
    )
    
    # Use the encoder-backed store methods
    store.mset([(1, 3.14), (2, 2.718)])
    values = store.mget([1, 2])  # Retrieves [3.14, 2.718]
    store.mdelete([1, 2])  # Deletes the keys 1 and 2
    View source on GitHub