LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicretrieversmulti_vectorMultiVectorRetriever
    Class●Since v1.0

    MultiVectorRetriever

    Copy
    MultiVectorRetriever()

    Bases

    BaseRetriever

    Used in Docs

    • Docugami integration
    • Fleet AI context integration

    Attributes

    Inherited fromBaseRetriever(langchain_core)

    Attributes

    Amodel_configAtagsAmetadata

    Methods

    Minvoke
    View source on GitHub
    M
    ainvoke

    Inherited fromRunnableSerializable(langchain_core)

    Attributes

    AnameAmodel_config

    Methods

    Mto_jsonMconfigurable_fieldsMconfigurable_alternatives

    Inherited fromSerializable(langchain_core)

    Attributes

    Alc_secretsAlc_attributesAmodel_config

    Methods

    Mis_lc_serializableMget_lc_namespaceMlc_idMto_jsonMto_json_not_implemented

    Inherited fromRunnable(langchain_core)

    Attributes

    AnameAInputTypeAOutputTypeAinput_schemaAoutput_schemaAconfig_specs

    Methods

    Mget_nameMget_input_schemaMget_input_jsonschemaMget_output_schemaMget_output_jsonschemaM
    attribute
    vectorstore: VectorStore

    The underlying VectorStore to use to store small chunks and their embedding vectors

    attribute
    byte_store: ByteStore | None

    The lower-level backing storage layer for the parent documents

    attribute
    docstore: BaseStore[str, Document]

    The storage interface for the parent documents

    attribute
    id_key: str
    attribute
    search_kwargs: dict

    Keyword arguments to pass to the search function.

    attribute
    search_type: SearchType

    Type of search to perform (similarity / mmr)

    Retriever that supports multiple embeddings per parent document.

    This retriever is designed for scenarios where documents are split into smaller chunks for embedding and vector search, but retrieval returns the original parent documents rather than individual chunks.

    It works by:

    • Performing similarity (or MMR) search over embedded child chunks
    • Collecting unique parent document IDs from chunk metadata
    • Fetching and returning the corresponding parent documents from the docstore

    This pattern is commonly used in RAG pipelines to improve answer grounding while preserving full document context.

    config_schema
    Mget_config_jsonschema
    Mget_graph
    Mget_prompts
    Mpipe
    Mpick
    Massign
    Minvoke
    Mainvoke
    Mbatch
    Mbatch_as_completed
    Mabatch
    Mabatch_as_completed
    Mstream
    Mastream
    Mastream_log
    Mastream_events
    Mtransform
    Matransform
    Mbind
    Mwith_config
    Mwith_listeners
    Mwith_alisteners
    Mwith_types
    Mwith_retry
    Mmap
    Mwith_fallbacks
    Mas_tool