LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicmodel_laboratory
    Module●Since v1.0

    model_laboratory

    Experiment with different models.

    Classes

    class
    Chain

    Abstract base class for creating structured sequences of calls to components.

    Chains should be used to encode a sequence of calls to components like models, document retrievers, other chains, etc., and provide a simple interface to this sequence.

    class
    ModelLaboratory

    A utility to experiment with and compare the performance of different models.

    deprecatedclass
    LLMChain

    Chain to run queries against LLMs.

    This class is deprecated. See below for an example implementation using LangChain runnables:

    from langchain_core.output_parsers import StrOutputParser
    from langchain_core.prompts import PromptTemplate
    from langchain_openai import OpenAI
    
    prompt_template = "Tell me a {adjective} joke"
    prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template)
    model = OpenAI()
    chain = prompt | model | StrOutputParser()
    
    chain.invoke("your adjective here")
    View source on GitHub