LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicmemorysummary
    Module●Since v1.0

    summary

    Attributes

    attribute
    SUMMARY_PROMPT

    Classes

    deprecatedclass
    LLMChain

    Chain to run queries against LLMs.

    This class is deprecated. See below for an example implementation using LangChain runnables:

    from langchain_core.output_parsers import StrOutputParser
    from langchain_core.prompts import PromptTemplate
    from langchain_openai import OpenAI
    
    prompt_template = "Tell me a {adjective} joke"
    prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template)
    model = OpenAI()
    chain = prompt | model | StrOutputParser()
    
    chain.invoke("your adjective here")
    deprecatedclass
    BaseChatMemory

    Abstract base class for chat memory.

    ATTENTION This abstraction was created prior to when chat models had native tool calling capabilities. It does NOT support native tool calling capabilities for chat models and will fail SILENTLY if used with a chat model that has native tool calling.

    DO NOT USE THIS ABSTRACTION FOR NEW CODE.

    deprecatedclass
    SummarizerMixin

    Mixin for summarizer.

    deprecatedclass
    ConversationSummaryMemory

    Continually summarizes the conversation history.

    The summary is updated after each conversation turn. The implementations returns a summary of the conversation history which can be used to provide context to the model.

    View source on GitHub