LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicevaluationstring_distance
    Module●Since v1.0

    string_distance

    String distance evaluators.

    Classes

    class
    PairwiseStringDistanceEvalChain

    Compute string edit distances between two predictions.

    class
    StringDistance

    Distance metric to use.

    class
    StringDistanceEvalChain

    Compute string distances between the prediction and the reference.

    Examples:

    from langchain_classic.evaluation import StringDistanceEvalChain evaluator = StringDistanceEvalChain() evaluator.evaluate_strings( prediction="Mindy is the CTO", reference="Mindy is the CEO", )

    Using the load_evaluator function:

    from langchain_classic.evaluation import load_evaluator evaluator = load_evaluator("string_distance") evaluator.evaluate_strings( prediction="The answer is three", reference="three", )

    Modules

    module
    base

    String distance evaluators based on the RapidFuzz library.

    View source on GitHub