LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicevaluationloadingload_evaluators
    Function●Since v1.0

    load_evaluators

    Load evaluators specified by a list of evaluator types.

    Parameters

    evaluators : Sequence[EvaluatorType] The list of evaluator types to load. llm : BaseLanguageModel, optional The language model to use for evaluation, if none is provided, a default ChatOpenAI gpt-4 model will be used. config : dict, optional A dictionary mapping evaluator types to additional keyword arguments, by default None **kwargs : Any Additional keyword arguments to pass to all evaluators.

    Returns:

    List[Chain] The loaded evaluators.

    Examples:

    from langchain_classic.evaluation import load_evaluators, EvaluatorType evaluators = [EvaluatorType.QA, EvaluatorType.CRITERIA] loaded_evaluators = load_evaluators(evaluators, criteria="helpfulness")

    Copy
    load_evaluators(
      evaluators: Sequence[EvaluatorType],
      *,
      llm: BaseLanguageModel | None = None,
      config: dict | None = None,
      **kwargs: Any = {}
    ) -> list[Chain | StringEvaluator]
    View source on GitHub