LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicevaluationembedding_distance
    Module●Since v1.0

    embedding_distance

    Evaluators that measure embedding distances.

    Classes

    class
    EmbeddingDistance

    Embedding Distance Metric.

    class
    EmbeddingDistanceEvalChain

    Embedding distance evaluation chain.

    Use embedding distances to score semantic difference between a prediction and reference.

    class
    PairwiseEmbeddingDistanceEvalChain

    Use embedding distances to score semantic difference between two predictions.

    Examples:

    chain = PairwiseEmbeddingDistanceEvalChain() result = chain.evaluate_string_pairs(prediction="Hello", prediction_b="Hi") print(result) {'score': 0.5}

    Modules

    module
    base

    A chain for comparing the output of two models using embeddings.

    View source on GitHub