LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicevaluationagentstrajectory_eval_chainTrajectoryEvalChainfrom_llm
    Method●Since v1.0

    from_llm

    Create a TrajectoryEvalChain object from a language model chain.

    Copy
    from_llm(
      cls,
      llm: BaseLanguageModel,
      agent_tools: Sequence[BaseTool] | None = None,
      output_parser: TrajectoryOutputParser | None = None,
      **kwargs: Any = {}
    ) -> TrajectoryEvalChain

    Parameters

    NameTypeDescription
    llm*BaseLanguageModel

    The language model chain.

    agent_toolsSequence[BaseTool] | None
    Default:None

    A list of tools available to the agent.

    output_parser *unknown

    The output parser used to parse the chain output into a score.

    **kwargsAny
    Default:{}

    Additional keyword arguments.

    View source on GitHub