LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicchainsqa_with_sourcesretrievalRetrievalQAWithSourcesChain
    Class●Since v1.0

    RetrievalQAWithSourcesChain

    Copy
    RetrievalQAWithSourcesChain()

    Bases

    BaseQAWithSourcesChain

    Used in Docs

    • Jaguar vector database integration
    • Marqo integration
    • Neo4j vector index integration
    • Psychic integration
    • Weaviate integration

    Attributes

    Inherited fromBaseQAWithSourcesChain

    Attributes

    Acombine_documents_chain: BaseCombineDocumentsChain
    —

    Chain to use to combine documents.

    Aquestion_key: strAinput_docs_key: str
    View source on GitHub
    A
    answer_key
    : str
    —

    Key in output of llm_chain to return as answer.

    Asources_answer_key: str
    Areturn_source_documents: bool
    —

    Return the source documents.

    Amodel_config
    Ainput_keys: list[str]
    Aoutput_keys: list[str]
    —

    The keys to use for the output.

    Methods

    Mfrom_llm
    —

    Initialize from llm using default template.

    Mfrom_chain_type
    —

    Load chain from chain type.

    Mvalidate_naming
    —

    Fix backwards compatibility in naming.

    Inherited fromChain

    Attributes

    Amemory: BaseMemory | None
    —

    Optional memory object.

    Acallbacks: CallbacksAverbose: boolAtags: list[str] | NoneAmetadata: dict[str, Any] | NoneAcallback_manager: BaseCallbackManager | None
    —

    [DEPRECATED] Use callbacks instead.

    Amodel_configAinput_keys: list[str]Aoutput_keys: list[str]
    —

    The keys to use for the output.

    Methods

    Mget_input_schemaMget_output_schemaMinvokeMainvokeMraise_callback_manager_deprecation
    —

    Raise deprecation warning if callback_manager is used.

    Inherited fromRunnableSerializable(langchain_core)

    Attributes

    AnameAmodel_config

    Methods

    Mto_jsonMconfigurable_fieldsMconfigurable_alternatives

    Inherited fromSerializable(langchain_core)

    Attributes

    Alc_secretsAlc_attributesAmodel_config

    Methods

    Mis_lc_serializableMget_lc_namespaceMlc_idMto_jsonMto_json_not_implemented

    Inherited fromRunnable(langchain_core)

    Attributes

    AnameAInputTypeAOutputTypeAinput_schemaAoutput_schemaAconfig_specs

    Methods

    Mget_nameMget_input_schemaMget_input_jsonschemaMget_output_schemaMget_output_jsonschemaM
    attribute
    retriever: BaseRetriever

    Index to connect to.

    attribute
    reduce_k_below_max_tokens: bool

    Reduce the number of results to return from store based on tokens limit

    attribute
    max_tokens_limit: int

    Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true

    Question-answering with sources over an index.

    M
    set_verbose
    —

    Set the chain verbosity.

    Macall
    —

    Asynchronously execute the chain.

    Mprep_outputs
    —

    Validate and prepare chain outputs, and save info about this run to memory.

    Maprep_outputs
    —

    Validate and prepare chain outputs, and save info about this run to memory.

    Mprep_inputs
    —

    Prepare chain inputs, including adding inputs from memory.

    Maprep_inputs
    —

    Prepare chain inputs, including adding inputs from memory.

    Mrun
    —

    Convenience method for executing chain.

    Marun
    —

    Convenience method for executing chain.

    Mdict
    —

    Return dictionary representation of agent.

    Msave
    —

    Save the agent.

    Mapply
    —

    Utilize the LLM generate method for speed gains.

    config_schema
    Mget_config_jsonschema
    Mget_graph
    Mget_prompts
    Mpipe
    Mpick
    Massign
    Minvoke
    Mainvoke
    Mbatch
    Mbatch_as_completed
    Mabatch
    Mabatch_as_completed
    Mstream
    Mastream
    Mastream_log
    Mastream_events
    Mtransform
    Matransform
    Mbind
    Mwith_config
    Mwith_listeners
    Mwith_alisteners
    Mwith_types
    Mwith_retry
    Mmap
    Mwith_fallbacks
    Mas_tool