LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicchainsopenai_functionscitation_fuzzy_matchcreate_citation_fuzzy_match_runnable
    Function●Since v1.0

    create_citation_fuzzy_match_runnable

    Create a citation fuzzy match Runnable.

    Example usage:

    from langchain_classic.chains import create_citation_fuzzy_match_runnable
    from langchain_openai import ChatOpenAI
    
    model = ChatOpenAI(model="gpt-4o-mini")
    
    context = "Alice has blue eyes. Bob has brown eyes. Charlie has green eyes."
    question = "What color are Bob's eyes?"
    
    chain = create_citation_fuzzy_match_runnable(model)
    chain.invoke({"question": question, "context": context})
    Copy
    create_citation_fuzzy_match_runnable(
        llm: BaseChatModel,
    ) -> Runnable

    Parameters

    NameTypeDescription
    llm*BaseChatModel

    Language model to use for the chain. Must implement bind_tools.

    View source on GitHub