LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicchainsopenai_functionsbasecreate_openai_fn_chain
    Function●Since v1.0Deprecated

    create_openai_fn_chain

    [Legacy] Create an LLM chain that uses OpenAI functions.

    Copy
    create_openai_fn_chain(
      functions: Sequence[dict[str, Any] | type[BaseModel] | Callable],
      llm: BaseLanguageModel,
      prompt: BasePromptTemplate,
      *,
      enforce_single_function_usage: bool = True,
      output_key: str = 'function',
      output_parser: BaseLLMOutputParser | None = None,
      **kwargs: Any = {}
    ) -> LLMChain

    Example:

    from typing import Optional
    
    from langchain_classic.chains.openai_functions import create_openai_fn_chain
    from langchain_openai import ChatOpenAI
    from langchain_core.prompts import ChatPromptTemplate
    
    from pydantic import BaseModel, Field
    
    class RecordPerson(BaseModel):
        """Record some identifying information about a person."""
    
        name: str = Field(..., description="The person's name")
        age: int = Field(..., description="The person's age")
        fav_food: str | None = Field(None, description="The person's favorite food")
    
    class RecordDog(BaseModel):
        """Record some identifying information about a dog."""
    
        name: str = Field(..., description="The dog's name")
        color: str = Field(..., description="The dog's color")
        fav_food: str | None = Field(None, description="The dog's favorite food")
    
    model = ChatOpenAI(model="gpt-4", temperature=0)
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", "You are a world class algorithm for recording entities."),
            ("human", "Make calls to the relevant function to record the entities in the following input: {input}"),
            ("human", "Tip: Make sure to answer in the correct format"),
        ]
    )
    chain = create_openai_fn_chain([RecordPerson, RecordDog], model, prompt)
    chain.run("Harry was a chubby brown beagle who loved chicken")
    # -> RecordDog(name="Harry", color="brown", fav_food="chicken")
    

    Parameters

    NameTypeDescription
    functions*Sequence[dict[str, Any] | type[BaseModel] | Callable]

    A sequence of either dictionaries, pydantic.BaseModels classes, or Python functions. If dictionaries are passed in, they are assumed to already be a valid OpenAI functions. If only a single function is passed in, then it will be enforced that the model use that function. pydantic.BaseModels and Python functions should have docstrings describing what the function does. For best results, pydantic.BaseModels should have descriptions of the parameters and Python functions should have Google Python style args descriptions in the docstring. Additionally, Python functions should only use primitive types (str, int, float, bool) or pydantic.BaseModels for arguments.

    llm*BaseLanguageModel

    Language model to use, assumed to support the OpenAI function-calling API.

    prompt*BasePromptTemplate

    BasePromptTemplate to pass to the model.

    enforce_single_function_usagebool
    Default:True

    only used if a single function is passed in. If True, then the model will be forced to use the given function. If False, then the model will be given the option to use the given function or not.

    output_keystr
    Default:'function'

    The key to use when returning the output in LLMChain.call.

    output_parserBaseLLMOutputParser | None
    Default:None

    BaseLLMOutputParser to use for parsing model outputs. By default will be inferred from the function types. If pydantic.BaseModels are passed in, then the OutputParser will try to parse outputs using those. Otherwise model outputs will simply be parsed as JSON. If multiple functions are passed in and they are not pydantic.BaseModels, the chain output will include both the name of the function that was returned and the arguments to pass to the function.

    **kwargsAny
    Default:{}

    Additional keyword arguments to pass to LLMChain.

    View source on GitHub