LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicchainshydebaseHypotheticalDocumentEmbedderfrom_llm
    Method●Since v1.0

    from_llm

    Load and use LLMChain with either a specific prompt key or custom prompt.

    Copy
    from_llm(
      cls,
      llm: BaseLanguageModel,
      base_embeddings: Embeddings,
      prompt_key: str | None = None,
      custom_prompt: BasePromptTemplate | None = None,
      **kwargs: Any = {}
    ) -> HypotheticalDocumentEmbedder
    View source on GitHub