LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicchainsconversational_retrievalbaseBaseConversationalRetrievalChain
    Class●Since v1.0

    BaseConversationalRetrievalChain

    Copy
    BaseConversationalRetrievalChain()

    Bases

    Chain

    Attributes

    Methods

    Inherited fromChain

    Attributes

    Amemory: BaseMemory | None
    —

    Optional memory object.

    Acallbacks: CallbacksAverbose: boolAtags
    View source on GitHub
    : list[str] | None
    Ametadata: dict[str, Any] | None
    Acallback_manager: BaseCallbackManager | None
    —

    [DEPRECATED] Use callbacks instead.

    Methods

    Mget_output_schemaMinvokeMainvokeMraise_callback_manager_deprecation
    —

    Raise deprecation warning if callback_manager is used.

    Mset_verbose
    —

    Set the chain verbosity.

    Macall
    —

    Asynchronously execute the chain.

    Mprep_outputs
    —

    Validate and prepare chain outputs, and save info about this run to memory.

    Maprep_outputs
    —

    Validate and prepare chain outputs, and save info about this run to memory.

    Mprep_inputs
    —

    Prepare chain inputs, including adding inputs from memory.

    Maprep_inputs
    —

    Prepare chain inputs, including adding inputs from memory.

    Mrun
    —

    Convenience method for executing chain.

    Marun
    —

    Convenience method for executing chain.

    Mdict
    —

    Return dictionary representation of agent.

    Mapply
    —

    Utilize the LLM generate method for speed gains.

    Inherited fromRunnableSerializable(langchain_core)

    Attributes

    Aname

    Methods

    Mto_jsonMconfigurable_fieldsMconfigurable_alternatives

    Inherited fromSerializable(langchain_core)

    Attributes

    Alc_secretsAlc_attributes

    Methods

    Mis_lc_serializableMget_lc_namespaceMlc_idMto_jsonMto_json_not_implemented

    Inherited fromRunnable(langchain_core)

    Attributes

    AnameAInputTypeAOutputTypeAinput_schemaAoutput_schemaAconfig_specs

    Methods

    Mget_nameMget_input_jsonschemaMget_output_schemaMget_output_jsonschemaMconfig_schemaM
    attribute
    combine_docs_chain: BaseCombineDocumentsChain

    The chain used to combine any retrieved documents.

    attribute
    question_generator: LLMChain

    The chain used to generate a new question for the sake of retrieval. This chain will take in the current question (with variable question) and any chat history (with variable chat_history) and will produce a new standalone question to be used later on.

    attribute
    output_key: str

    The output key to return the final answer of this chain in.

    attribute
    rephrase_question: bool

    Whether or not to pass the new generated question to the combine_docs_chain. If True, will pass the new generated question along. If False, will only use the new generated question for retrieval and pass the original question along to the combine_docs_chain.

    attribute
    return_source_documents: bool

    Return the retrieved source documents as part of the final result.

    attribute
    return_generated_question: bool

    Return the generated question as part of the final result.

    attribute
    get_chat_history: Callable[[list[CHAT_TURN_TYPE]], str] | None

    An optional function to get a string of the chat history. If None is provided, will use a default.

    attribute
    response_if_no_docs_found: str | None

    If specified, the chain will return a fixed response if no docs are found for the question.

    attribute
    model_config
    attribute
    input_keys: list[str]

    Input keys.

    attribute
    output_keys: list[str]

    Return the output keys.

    method
    get_input_schema
    method
    save

    Chain for chatting with an index.

    get_config_jsonschema
    Mget_graph
    Mget_prompts
    Mpipe
    Mpick
    Massign
    Minvoke
    Mainvoke
    Mbatch
    Mbatch_as_completed
    Mabatch
    Mabatch_as_completed
    Mstream
    Mastream
    Mastream_log
    Mastream_events
    Mtransform
    Matransform
    Mbind
    Mwith_config
    Mwith_listeners
    Mwith_alisteners
    Mwith_types
    Mwith_retry
    Mmap
    Mwith_fallbacks
    Mas_tool