Chain for applying constitutional principles.
This class is deprecated. See below for a replacement implementation using LangGraph. The benefits of this implementation are:
Install LangGraph with:
pip install -U langgraph
from typing import List, Optional, Tuple
from langchain_classic.chains.constitutional_ai.prompts import (
CRITIQUE_PROMPT,
REVISION_PROMPT,
)
from langchain_classic.chains.constitutional_ai.models import ConstitutionalPrinciple
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langgraph.graph import END, START, StateGraph
from typing_extensions import Annotated, TypedDict
model = ChatOpenAI(model="gpt-4o-mini")
class Critique(TypedDict):
"""Generate a critique, if needed."""
critique_needed: Annotated[bool, ..., "Whether or not a critique is needed."]
critique: Annotated[str, ..., "If needed, the critique."]
critique_prompt = ChatPromptTemplate.from_template(
"Critique this response according to the critique request. "
"If no critique is needed, specify that.\n\n"
"Query: {query}\n\n"
"Response: {response}\n\n"
"Critique request: {critique_request}"
)
revision_prompt = ChatPromptTemplate.from_template(
"Revise this response according to the critique and reivsion request.\n\n"
"Query: {query}\n\n"
"Response: {response}\n\n"
"Critique request: {critique_request}\n\n"
"Critique: {critique}\n\n"
"If the critique does not identify anything worth changing, ignore the "
"revision request and return 'No revisions needed'. If the critique "
"does identify something worth changing, revise the response based on "
"the revision request.\n\n"
"Revision Request: {revision_request}"
)
chain = model | StrOutputParser()
critique_chain = critique_prompt | model.with_structured_output(Critique)
revision_chain = revision_prompt | model | StrOutputParser()
class State(TypedDict):
query: str
constitutional_principles: List[ConstitutionalPrinciple]
initial_response: str
critiques_and_revisions: List[Tuple[str, str]]
response: str
async def generate_response(state: State):
"""Generate initial response."""
response = await chain.ainvoke(state["query"])
return {"response": response, "initial_response": response}
async def critique_and_revise(state: State):
"""Critique and revise response according to principles."""
critiques_and_revisions = []
response = state["initial_response"]
for principle in state["constitutional_principles"]:
critique = await critique_chain.ainvoke(
{
"query": state["query"],
"response": response,
"critique_request": principle.critique_request,
}
)
if critique["critique_needed"]:
revision = await revision_chain.ainvoke(
{
"query": state["query"],
"response": response,
"critique_request": principle.critique_request,
"critique": critique["critique"],
"revision_request": principle.revision_request,
}
)
response = revision
critiques_and_revisions.append((critique["critique"], revision))
else:
critiques_and_revisions.append((critique["critique"], ""))
return {
"critiques_and_revisions": critiques_and_revisions,
"response": response,
}
graph = StateGraph(State)
graph.add_node("generate_response", generate_response)
graph.add_node("critique_and_revise", critique_and_revise)
graph.add_edge(START, "generate_response")
graph.add_edge("generate_response", "critique_and_revise")
graph.add_edge("critique_and_revise", END)
app = graph.compile()
constitutional_principles=[
ConstitutionalPrinciple(
critique_request="Tell if this answer is good.",
revision_request="Give a better answer.",
)
]
query = "What is the meaning of life? Answer in 10 words or fewer."
async for step in app.astream(
{"query": query, "constitutional_principles": constitutional_principles},
stream_mode="values",
):
subset = ["initial_response", "critiques_and_revisions", "response"]
print({k: v for k, v in step.items() if k in subset})Example:
from langchain_openai import OpenAI
from langchain_classic.chains import LLMChain, ConstitutionalChain
from langchain_classic.chains.constitutional_ai.models \
import ConstitutionalPrinciple
llmodelm = OpenAI()
qa_prompt = PromptTemplate(
template="Q: {question} A:",
input_variables=["question"],
)
qa_chain = LLMChain(llm=model, prompt=qa_prompt)
constitutional_chain = ConstitutionalChain.from_llm(
llm=model,
chain=qa_chain,
constitutional_principles=[
ConstitutionalPrinciple(
critique_request="Tell if this answer is good.",
revision_request="Give a better answer.",
)
],
)
constitutional_chain.run(question="What is the meaning of life?")
Set the chain verbosity.
Input keys.
Output keys.
Get constitutional principles by name.
Create a chain from an LLM.