LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicchainscombine_documentsstuff
    Module●Since v1.0

    stuff

    Chain that combines documents by stuffing into context.

    Attributes

    attribute
    DEFAULT_DOCUMENT_PROMPT
    attribute
    DEFAULT_DOCUMENT_SEPARATOR: str
    attribute
    DOCUMENTS_KEY: str

    Functions

    function
    create_stuff_documents_chain

    Create a chain for passing a list of Documents to a model.

    Classes

    class
    BaseCombineDocumentsChain

    Base interface for chains combining documents.

    Subclasses of this chain deal with combining documents in a variety of ways. This base class exists to add some uniformity in the interface these types of chains should expose. Namely, they expect an input key related to the documents to use (default input_documents), and then also expose a method to calculate the length of a prompt from documents (useful for outside callers to use to determine whether it's safe to pass a list of documents into this chain or whether that will be longer than the context length).

    deprecatedclass
    LLMChain

    Chain to run queries against LLMs.

    This class is deprecated. See below for an example implementation using LangChain runnables:

    from langchain_core.output_parsers import StrOutputParser
    from langchain_core.prompts import PromptTemplate
    from langchain_openai import OpenAI
    
    prompt_template = "Tell me a {adjective} joke"
    prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template)
    model = OpenAI()
    chain = prompt | model | StrOutputParser()
    
    chain.invoke("your adjective here")
    deprecatedclass
    StuffDocumentsChain

    Chain that combines documents by stuffing into context.

    This chain takes a list of documents and first combines them into a single string. It does this by formatting each document into a string with the document_prompt and then joining them together with document_separator. It then adds that new string to the inputs with the variable name set by document_variable_name. Those inputs are then passed to the llm_chain.

    View source on GitHub