LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicagentsopenai_functions_multi_agentbaseOpenAIMultiFunctionsAgentfrom_llm_and_tools
    Method●Since v1.0

    from_llm_and_tools

    Construct an agent from an LLM and tools.

    Copy
    from_llm_and_tools(
      cls,
      llm: BaseLanguageModel,
      tools: Sequence[BaseTool],
      callback_manager: BaseCallbackManager | None = None,
      extra_prompt_messages: list[BaseMessagePromptTemplate] | None = None,
      system_message: SystemMessage | None = _NOT_SET,
      **kwargs: Any = {}
    ) -> BaseMultiActionAgent

    Parameters

    NameTypeDescription
    llm*BaseLanguageModel

    The language model to use.

    tools*Sequence[BaseTool]

    A list of tools to use.

    callback_managerBaseCallbackManager | None
    Default:None

    The callback manager to use.

    extra_prompt_messageslist[BaseMessagePromptTemplate] | None
    Default:None

    Extra prompt messages to use.

    system_messageSystemMessage | None
    Default:_NOT_SET

    The system message to use. Default is a default system message.

    kwargsAny
    Default:{}

    Additional arguments.

    View source on GitHub