LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicagentsmrklbaseMRKLChain
    Class●Since v1.0Deprecated

    MRKLChain

    Copy
    MRKLChain()

    Bases

    AgentExecutor

    Methods

    Inherited fromAgentExecutor

    Attributes

    Aagent: BaseSingleActionAgent | BaseMultiActionAgent | Runnable
    —

    The agent to run for creating a plan and determining actions

    Atools: Sequence[BaseTool]
    —

    The valid tools the agent can call.

    Areturn_intermediate_steps: bool
    —

    Whether to return the agent's trajectory of intermediate steps

    View source on GitHub
    Amax_iterations: int | None
    —

    The maximum number of steps to take before ending the execution

    Amax_execution_time: float | None
    —

    The maximum amount of wall clock time to spend in the execution

    Aearly_stopping_method: str
    —

    The method to use for early stopping if the agent never

    Ahandle_parsing_errors: bool | str | Callable[[OutputParserException], str]
    —

    How to handle errors raised by the agent's output parser.

    Atrim_intermediate_steps: int | Callable[[list[tuple[AgentAction, str]]], list[tuple[AgentAction, str]]]
    —

    How to trim the intermediate steps before returning them.

    Ainput_keys: list[str]
    Aoutput_keys: list[str]
    —

    The keys to use for the output.

    Methods

    Mfrom_agent_and_tools
    —

    Create from agent and tools.

    Mvalidate_tools
    —

    Validate that tools are compatible with agent.

    Mvalidate_runnable_agent
    —

    Convert runnable to agent if passed in.

    Msave
    —

    Save the agent.

    Msave_agent
    —

    Save the underlying agent.

    Miter
    —

    Enables iteration over steps taken to reach final output.

    Mlookup_tool
    —

    Lookup tool by name.

    MstreamMastream

    Inherited fromChain

    Attributes

    Amemory: BaseMemory | None
    —

    Optional memory object.

    Acallbacks: CallbacksAverbose: boolAtags: list[str] | NoneAmetadata: dict[str, Any] | NoneAcallback_manager: BaseCallbackManager | None
    —

    [DEPRECATED] Use callbacks instead.

    Amodel_configAinput_keys: list[str]Aoutput_keys: list[str]
    —

    The keys to use for the output.

    Methods

    Mget_input_schemaMget_output_schemaMinvokeMainvokeMraise_callback_manager_deprecation
    —

    Raise deprecation warning if callback_manager is used.

    Inherited fromRunnableSerializable(langchain_core)

    Attributes

    AnameAmodel_config

    Methods

    Mto_jsonMconfigurable_fieldsMconfigurable_alternatives

    Inherited fromSerializable(langchain_core)

    Attributes

    Alc_secretsAlc_attributesAmodel_config

    Methods

    Mis_lc_serializableMget_lc_namespaceMlc_idMto_jsonMto_json_not_implemented

    Inherited fromRunnable(langchain_core)

    Attributes

    AnameAInputTypeAOutputTypeAinput_schemaAoutput_schemaAconfig_specs

    Methods

    Mget_nameMget_input_schemaMget_input_jsonschemaMget_output_schemaMget_output_jsonschemaM
    method
    from_chains

    User-friendly way to initialize the MRKL chain.

    This is intended to be an easy way to get up and running with the MRKL chain.

    Chain that implements the MRKL system.

    M
    set_verbose
    —

    Set the chain verbosity.

    Macall
    —

    Asynchronously execute the chain.

    Mprep_outputs
    —

    Validate and prepare chain outputs, and save info about this run to memory.

    Maprep_outputs
    —

    Validate and prepare chain outputs, and save info about this run to memory.

    Mprep_inputs
    —

    Prepare chain inputs, including adding inputs from memory.

    Maprep_inputs
    —

    Prepare chain inputs, including adding inputs from memory.

    Mrun
    —

    Convenience method for executing chain.

    Marun
    —

    Convenience method for executing chain.

    Mdict
    —

    Return dictionary representation of agent.

    Msave
    —

    Save the agent.

    Mapply
    —

    Utilize the LLM generate method for speed gains.

    config_schema
    Mget_config_jsonschema
    Mget_graph
    Mget_prompts
    Mpipe
    Mpick
    Massign
    Minvoke
    Mainvoke
    Mbatch
    Mbatch_as_completed
    Mabatch
    Mabatch_as_completed
    Mstream
    Mastream
    Mastream_log
    Mastream_events
    Mtransform
    Matransform
    Mbind
    Mwith_config
    Mwith_listeners
    Mwith_alisteners
    Mwith_types
    Mwith_retry
    Mmap
    Mwith_fallbacks
    Mas_tool