LangChain Reference home pageLangChain ReferenceLangChain Reference
  • GitHub
  • Main Docs
Deep Agents
LangChain
LangGraph
Integrations
LangSmith
  • Overview
  • MCP Adapters
    • Overview
    • Agents
    • Callbacks
    • Chains
    • Chat models
    • Embeddings
    • Evaluation
    • Globals
    • Hub
    • Memory
    • Output parsers
    • Retrievers
    • Runnables
    • LangSmith
    • Storage
    Standard Tests
    Text Splitters
    ⌘I

    LangChain Assistant

    Ask a question to get started

    Enter to send•Shift+Enter new line

    Menu

    MCP Adapters
    OverviewAgentsCallbacksChainsChat modelsEmbeddingsEvaluationGlobalsHubMemoryOutput parsersRetrieversRunnablesLangSmithStorage
    Standard Tests
    Text Splitters
    Language
    Theme
    Pythonlangchain-classicagentschatbase
    Module●Since v1.0

    base

    Attributes

    attribute
    AGENT_DEPRECATION_WARNING: str
    attribute
    FORMAT_INSTRUCTIONS: str
    attribute
    HUMAN_MESSAGE: str
    attribute
    SYSTEM_MESSAGE_PREFIX: str
    attribute
    SYSTEM_MESSAGE_SUFFIX: str

    Functions

    function
    validate_tools_single_input

    Validate tools for single input.

    Classes

    class
    AgentOutputParser

    Base class for parsing agent output into agent action/finish.

    class
    ChatOutputParser

    Output parser for the chat agent.

    deprecatedclass
    Agent

    Agent that calls the language model and deciding the action.

    This is driven by a LLMChain. The prompt in the LLMChain MUST include a variable called "agent_scratchpad" where the agent can put its intermediary work.

    deprecatedclass
    LLMChain

    Chain to run queries against LLMs.

    This class is deprecated. See below for an example implementation using LangChain runnables:

    from langchain_core.output_parsers import StrOutputParser
    from langchain_core.prompts import PromptTemplate
    from langchain_openai import OpenAI
    
    prompt_template = "Tell me a {adjective} joke"
    prompt = PromptTemplate(input_variables=["adjective"], template=prompt_template)
    model = OpenAI()
    chain = prompt | model | StrOutputParser()
    
    chain.invoke("your adjective here")
    deprecatedclass
    ChatAgent

    Chat Agent.

    View source on GitHub